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We construct  a language L for a classical first-order predicate calculus with 
monadic  predicates only, extended by means  of  a family of statistical quantifiers. 
Then,  a formal semantic model ~ is put  forward for L which is compatible with 
a physical interpretation and embodies a truth theory which provides the statis- 
tical quantifiers with properties that fit their interpretation; in this framework, 
the truth mode of  physical laws is suitably characterized and a probability- 
frequency correlation principle is established. By making use of L and ~ ,  a set 
of  basic physical laws is stated that hold both in classical physics (CP) and in 
quan tum physics (QP), which allow the selection of suitable subsets of  primitive 
predicates of  L (the set 5r v of  pure states; the sets ~o and ~'E of operational 
and  exact effects, respectively) and the introduction on these subsets of  binary 
relations (a preclusion relation # on 5~ an order relation < on ~e ). By assuming  
further physical laws, (~e,  < )  turns out  to be a complete or thocomplemented 
lattice [mixtures and atomicity of  (~E, <)  also can be introduced by means  of 
suitable physical assumptions] .  Two languages L~ and L s are constructed that 
can be mapped  into L; the mapping induces on them mathematical  structures, 
some kind of truth function, an interpretation. The formulas of  L~ can be 
interpreted as statements about properties of  a physical object, and the truth 
function on L~- is two valued. The formulas of  L s can be endowed with two 
different interpretations as statements about the frequency of some physical 
property in some class (state) of  physical objects; consequently,  a two-valued 
truth function and a multivalued fuzzy-truth function are defined on L s .  In 
all cases the algebras of  propositions of  these "'logics" are complete ortho- 
complemented lattices isomorphic to ( ~e,  < ). These results hold both in CP and 
in QP; further physical assumptions  endow the lattice (~e,  <) ,  hence L~ and 
LSe, with further properties, such as distributivity in CP and weak modulari ty 
and covering law in QP. In the latter case, L~ and L s ,  together with their 
interpretations, can be considered different models of  the same basic mathemati-  
cal structure, and can be identified with s tandard (elementary) quan tum logics. 
These are therefore founded on the classical extended language L with semantic 
model ~ .  
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INTRODUCTION 

According to Jammer (1974), 2 a basic question lies at the origin of 
quantum logic (QL), that is, whether a new logic which is different from 
classical logic (CL) is needed in quantum physics (QP), CL being the 
standard logic underlying the formulation of classical physics (CP). 

Beginning with Birkhoff and von Neumann (1936), many authors have 
given a positive answer to this question and have put forward logical systems 
that should formalize the underlying logic of  QP. Nowadays, after some 
decades of  research in this area, some structures seem to be privileged 
candidates to the role of  models for a quantum sentential calculus (more 
precisely, for the algebra of propositions of such a calculus), that is, the 
orthocomplemented lattices which are introduced in many axiomatized or 
semiaxiomatized approaches to QP from different viewpoints [e.g., the 
lattice of  questions in the Mackey (1963) approach, the lattice of proposi- 
tions in the Jauch (1968) and Piron (1976) approach, the lattice of  events 
in the Pool (1968) approach, the lattice of decision effects in the Ludwig 
(1983) approach] which essentially share the same mathematical properties 
[we have already explored elsewhere, together with other authors, the links 
between some of the approaches quoted above; see Garola and Solombrino 
(1983)]. 

Yet, some authors reject a logical interpretation of these structures, 
which are interpreted as mere "formalizations of empirical facts," and deny 
the need for an alternative logic to CL. On the contrary, "a number of 
theorists proposed regarding quantum logic as a full-fledged new logic which 
by dictate of  experience is due to supersede classical logic" (Jammer, 1974). 

Whenever the latter viewpoint is adopted, some further problems arise, 
even whenever an elementary quantum sentential calculus with basic con- 
nectives 7 ,  ^, v only is considered. In fact, the interpretation of  the 
descriptive signs is not necessarily unique [they could represent statements 
about a single object, or different kinds of statements about ensembles of 
objects; e.g., Watanabe (1969), Beltrametti and Cassinelli (1976), van 
Fraassen (1981), Cattaneo and Marino (1988)]; moreover, the interpretation 
of  the connectives is also problematic (e.g., Jauch, 1968; Mielnik, 1976) 
and, in any case, they should not be read as "not ,"  "and,"  "or"  in the same 
sense as the corresponding connectives of classical logic (Quine, 1970). 
More generally, the problem arises of  endowing QL with a semantic 
apparatus which leads to an unambiguous interpretation of the formalism. 

ZJammer's book contains an extensive bibliography on the subject studied in this paper; further 
updated bibliography can be found in the book by Beltrametti and Cassinelli (1981) and in 
Holdsworth and Hooker (1983). Our reference list is by no means complete; the reader is 
referred to the above texts for a more detailed bibliography. 
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Many authors have dealt with the latter problem from different view- 
points. For instance, Putnam (1969) and Finkelstein (1972) proposed to 
"read off" the logic directly from the Hilbert space model for QP (Holds- 
worth and Hooker,  1983); but this procedure leads to a truth theory for 
QL which is neither Tarskian nor true-functional. More sophisticated 
attempts to solve the problem can be found in the treatments usually 
collected under the name "modal  approaches to QL" (Holdsworth and 
Hooker,  1983). In particular, a modal context allows for some kinds of  
classical foundation of QL; indeed, Dalla Chiara (1977) has provided a 
modal interpretation of minimal quantum logic into a suitable modal 
extension of  a classical language. This notwithstanding, it must be noted 
that any modal approach requires intensional (or semiextensional, Kripke- 
like) semantics, which increases the complexity (and, according to some 
authors, the miscomprehensibility) of the interpretative apparatus. More 
specifically, in modal approaches to QL some concepts are introduced [like 
van Fraassen's "possible situations" (1981) or Dishkant's "states of knowl- 
edge" (1972)] which cannot be identified with the orthodox concept of 
possible world and rely on an interpretation of physical states which poses 
some nontrivial epistemological problems. In any case, most approaches in 
this class seem to accept and corroborate the thesis that a nonstandard logic 
is required in QP. 

Our approach to the problem is completely different. Indeed we intend 
to defend the following thesis in the present paper: quantum logical structures 
can be obtained as particular theories based on specific axioms in the framework 
of  a suitably extended classical language L, with extensional semantics. 

The above thesis is relevant for several reasons. First, according to it, 
quantum logical axioms do not have a logical status; indeed, they are 
considered specific axioms of a physical theory. Second, the basic language 
of  the theory is an extended classical language, which suggests that a 
nonclassical logic is not required in QP (this statement strongly supports 
the belief of  the authors who reject a logical interpretation of quantum 
logical structures; nevertheless, our results at the end of Section 3 show 
that a logical interpretation is not completely excluded in our perspective 
and explain the sense in which it can be adopted, also throwing some light 
on the interpretation of  descriptive and logical signs in QL). Third, the 
semantic apparatus of  L is extensional, hence it dispenses with modality, 
thus gaining simplicity and avoiding the introduction of possible worlds. 

More specifically, our semantic apparatus for L admits a Tarskian truth 
theory and our interpretation of  L matches the intuitive physical interpreta- 
tion of that part of the common technical language which is formalized 
by L. It is remarkable that the extensionality of semantics occurs in our 
approach as a consequence of the fact that physical states are made to 
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correspond to predicates (interpreted inside "laboratories," which are parts 
of  the actual world), not to possible worlds or states of knowledge, thus 
avoiding a number of epistemological problems. In addition, the extension 
of any predicate in any laboratory is a set of individual physical systems, 
or "physical objects," in our semantics, and no physical statement about a 
physical object is meaningless in our approach (though its truth values 
could be non-measurable because of  quantum mechanical laws). 

We add that the independence of the concepts of  state and laboratory 
and the absence in L of any reference to possible worlds makes our semantic 
model suitable for a Kripkian extension where states, laboratories, and 
possible worlds are introduced conjointly; this should allow for a more 
complete characterization of  the logical status of physical laws, the charac- 
terization in the present paper being incomplete from an epistemological 
viewpoint, though sufficient for our purposes. 

We also note that we introduce a number of concepts while defending 
our thesis, some of which are epistemologically relevant even independent 
of  the thesis itself. We quote in particular the statistical quantifiers with 
their semantics, the laboratories, the characterization of the truth mode of 
deterministic and probabilistic physical laws, and the probabili ty-frequency 
correlation principle in Section 1; the set of  conditions which characterize 
physical models (in particular, condition SO in Definition 2.1.2), the 
definitions of  fuzzy and exact effects, the treatment of mixtures and entities 
in Section 2; and the techniques for translating nonstandard languages into 
a classical language and the characterization of classical physical models 
in Section 3. 

Finally, we underline that some ideas in this paper have been antici- 
pated by other authors. For instance, a distinction between different kinds 
of quantum logical statements can already be found in van Fraassen (1981); 
an embedding of the basic poset of physical proposition into a distributive 
logic has been proposed by Wallace (1979); a measure on the set of  possible 
worlds (here substituted by laboratories) and the definition of conditional 
probabilities with respect to a given state have been introduced by Bigelow 
(1979). However, our results stand on a different foundation, and there are 
basic epistemological and technical differences between our treatment and 
the ones quoted above. 

1. THE LANGUAGE L 

In the first part of this section (Sections 1.1-1.6) we introduce a formal 
language L with a semantic model ~ that we intend to use in order to state 
physical laws. We want L to be as simple as possible; thus, L is the language 
of  a predicate calculus of the first order with monadic predicates only, 
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extended by means of  a new family of quantifiers (the statistical quantifiers). 
Furthermore, ~)~ is a formal semantic model which is compatible with a 
suitable intended physical interpretation of  L, according to Which some 
predicates in L denote physical states, the elements of a set I of indexes 
correspond to physical laboratories, and the formulas where statistical 
quantifiers appear formalize statements about conditional frequencies. We 
show (Sections 1.7, 1.8) that L can be extended into a language Ln by 
means of probability operators, so that probabilistic physical laws can be 
stated by means of (metalinguistic) schemes of formulas of Lr~, their truth 
mode being suitably characterized and distinguished from the truth modes 
of  analytical statements or logical laws. Then, we prove that, under some 
general assumptions (probability-frequency correlation principle), a prob- 
abilistic statement of Ln can be substituted by a statement of L about 
conditional frequencies, so that the extension of L into Ln can be avoided 
and physical laws can be stated by means of  schemes of formulas of L only. 

1.1. Syntax 

Following usual procedures, we construct our formal language L by 
giving an alphabet, i.e., a set of primitive signs classified according to 
syntactic categories and a (finite) set of formation rules for well-formed 
formulas. This is done by making use of a nonformalized metalanguage, 
consisting of a part of the English language together with some technical 
symbols, i.e., bold letters of  the Latin alphabet having the role of meta- 
linguistic variables. 

Thus, we introduce the following definitions. 

Definition 1.1.1. We call an alphabet, and denote by ~ ,  the set of ' the 
descriptive, logical, and auxiliary signs defined as follows. 

Descriptive signs 
D1. Individual variables: x, y, z, . . . .  
D2. Monadic predicates: 0, ~; E, El . . . .  ; S, S ~ , . . . .  

Logical signs 
L1. Connectives: 7 ,  ^, v, -% <-->. 
L2. Quantifiers: 3, V. 
L3. The family of statistical quantifiers {Tra}a~.~ZtlO.lD, with ~3([0, 1]) 

the set of all Borel subsets of the interval [0, 1]. 

Auxiliary signs 
A1. Round parentheses (-);  s l an t / .  

Furthermore, we denote by X the set of (individual) variables in 
and by ~ the set of predicates. 



6 Garola 

Definition 1.1.2. With reference to Definition 1.1.1, we call formation 
rules (FR) for well-formed formulas (wffs) the following rules. 

W1. For every x~  X and P ~  ~, P(x) is a wff. 
W2. Let A be a wff; then, -TA is a wff. 
W3. Let A, B be wffs; then A ^ B ,  A v B ,  A-~B, and A,~+B are wffs. 
W4. Let A be a wff, x an individual variable which occurs free in A; 

then (3x)A, (Vx)A are wffs. 
WS. Let A, B be wffs, x c X ,  x free in A, and let A ~ ( [ 0 ,  1]); then 

(~'~x)A/B is a wff [we shall briefly write (~-~x)A in place of  
(~-~x)A/B whenever B = ~(x)]. 

Furthermore,  we denote by �9 the set of  all the wits constructed by 
means of  the signs in ~ and of the rules W~- Ws, and call formal language 
L the pair L- -  (~ ,  ~ ) .  

1.2. S e m a n t i c s  

A semantic structure for the language L can be introduced by means 
of the following definitions. 

Definition 1.2.1. With reference to the definitions in Section 1.1, we 
call the formal statistical semantic interpretation (briefly, SS-interpretation ) 
for the language L = (~1, ~ )  the 5-pie 

~ =  (I, {D,, ~i, v,},~,, {~-i}ie,, {~i}i~i, P) 

defined as follows. 

(a) I is a nonempty set, called the set of  laboratories. 
(b) {Di, ~i, v i } ~  is a family of  measure spaces, which associates to 

every laboratory i e I a domain Di, a o--algebra ~ of subsets of  
D~, and a measure function v, defined on all subsets of  the algebra 
~ and such that, for every G c  ~ ,  v~(G)=0 iff G coincides with 
the empty set Q. 

(c) { ~ } ~  is a family which associates with every laboratory i e  I a 
set J~ of subsets of  D~ that belong to the o--algebra ~ and is such 
that 0 c g/--/ and D~ e J-i. 

(d) {~/ ' i}~ is a family which associates with every laboratory i e I  
a partition ~ of D~ such that every W e  ~H/'~ belongs to the 
o--algebra ~ .  

(e) p is an assignment function 

such that the following conditions are satisfied. 
(i) For every i ~ I, p(i, ~) = ~ ,  p(i, ~) = D~. 

(ii) Two disjoint subsets ~, 2/' of  ~ exist, with ~, ~ ~ ~, such that 
~ ~ = ~,  and for every i e I, p(i, g)  = ~ ,  p(i, 9 ~) = ~ 
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Whenever ~ is an SS-interpretation, we call ~, 5r the sets of symbols 
of effects and states, respectively. 

In the following definition we collect some derived concepts in any 
SS-interpretation. 

Definition 1.2.2. Let ~ be an SS-interpretation for the language L = 
(M, ~ ) ,  and let us make reference to the definitions in Section 1.1 and to 
Definition 1.2.1. 

For every i 6 I we call the local assignment function both the pair (i, p) 
and (by abuse of language) the mapping 

p~: ~-~ J-~ ~ ~r~ 

canonically induced by the pair (i, p). 
We call the interpretation of the variables (of L) every mapping 

or: I x X-~ U Di 
i ~ l  

such that, for every i~ I and x c X, (r(i, x ) c  Di. 
We denote by E the set of  all interpretations of the variables of L, and 

for every o- c E and x c X we put 

Y~.x = {ox ~ E]for  every i ~ I, y c  X\{x}, ~rx (i, y) = tr(i, y)} 

For every o-~E we call the evaluation both the  pair (p, tr) and (by 
abuse of  language) the mapping 

canonically induced by the pair (p, or). 
Finally, for every i c I and cr ~ Y~ we call the local evaluation both the 

triple (i, p, o-) and (by abuse of language) the mapping 

07: X u ~ --) Di ~ J-i w ~14/'i 
canonically induced by the triple (i, p, (r). 

1.3. The Intended Interpretation 

Our definitions in Sections 1.1 and 1.2 are suggested by the intended 
physical interpretation of  the descriptive signs of L that we have in mind 
when constructing L. 

In order to make this point clear, let us recall that, according to an 
analysis of physical experiments made by Ludwig (1983; see also Ludwig, 
1971, 1977) two sets can be considered fundamental in physics, and precisely 
the set of preparation procedures (here, briefly, preparations) and the set of  
(dichotomic) registration procedures. Each of  these sets induces on the other, 
via a probability function, an equivalence relation, so that both can be 
partitioned into classes that are called ensembles (or states) and effects, and 
that respectively collect all preparations and all registration procedures 
which can be considered physically equivalent. 
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In the present paper we essentially adopt the above analysis (it must 
be noted, however, that a preparation or registration procedure should not 
be confused here with its actualization by means of an apparatus in some 
laboratory; rather, it can be interpreted, extensionally, as the set of  all its 
actualizations in every laboratory, or, intensionally, as a set of rules for 
constructing the corresponding apparatus in every laboratory). Yet it must 
be clearly understood that our interpretation of  effects and states differs 
from Ludwig's in some basic aspects; we limit ourselves here to pointing 
out the specific differences which explain why our mathematical structures 
do not match the structures introduced by Ludwig in his papers on the 
subject. 

First, the term effect is used here with an enlarged meaning; more 
precisely, we call effects both the "operat ional"  effects, which can be defined 
as in Ludwig's approach, and the "conceptual"  effects; the latter collect 
purely theoretical selection procedures and do not correspond to classes of 
physical apparatus (hence, they play the role of  theoretical entities). These 
different kinds of effects are formally distinguished in Section 3.2, and our 
theory does not prohibit the set of conceptual effects from being void. 

Second, every state, though operationally defined as a class of  prep- 
aration procedures, as in Ludwig's approach, is represented here by "actual"  
physical objects in every laboratory; this introduces a conceptual asymmetry 
between states and effects in our interpretation (discussed in more detail 
at the end of  this subsection) which prohibits the set c f  preparations from 
being endowed with the structure type "selection procedure." 

Bearing in mind the differences outlined above, let us come to the 
intended physical interpretation. We state that the predicate signs in ~ and 
9 ~ be interpeted as nouns of effects and states, respectively. Then our 
interpretation endows the elements of the abstract SS-interpretation intro- 
duced in Definition 1.2.1 with a physical meaning, as follows. 

(i) Every i ~ I is interpreted as a laboratory in the usual physical sense, 
i.e., a limited space-time domain where measurements and observations 
take place. It must be clearly understood that every laboratory is conceived 
here as a part of  the actual world and must not be confused with a "possible 
world" in the sense established by Kripke semantics. 

(ii) For every i ~ / ,  the domain Dr is interpreted as the set of all the 
physical objects which are produced in the laboratory i by activating 
apparatus which realize in i some preparing procedures. Bearing in mind 
this interpretation, Dr could be assumed to be finite; in this case, the 
o--algebra ~i coincides with the set of all subsets of Dr, and for every G c ~; 
the real number vr(G) may be interpreted as the number of elements in (3. 

(iii) For every i ~ I, every class T~ J-i is the image, through the assign- 
ment function Or, of a symbol of effect E. Whenever the effect denoted by 
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E is "operat ional"  in the sense specified above, T is interpreted as the class 
of all physical objects in Di which would give the yes answer if tested with 
any of  the apparatus which actualize in i the registration procedures collec- 
ted in the effect denoted by E (we briefly say in the sequel that T is the 
class of  all physical objects which would be selected in i by the effect 
denoted by E). Yet, since in our intended interpretation conceptual effects 
are not excluded, some classes of objects may belong to ~-i which would 
be selected by theoretical procedures, not by means of concrete apparatus 
in i. 

It must be noted that, consistent with the above intended interpretation, 
we have not assumed any restriction on ~-i (so that two classes T~, T2 c ~-i 
can be disjoint, or overlap, etc.). Furthermore, we note that the class D~, 
which is associated by p~ to the effect 9, is selected by any apparatus which 
gives the yes answer whenever a physical object in D~ is tested, while the 
class •, which is associated by p~ to the effect 0, is selected by any apparatus 
which always yields the negative answer. 

(iv) For every i ~ I, every class W c 7~i is the image, through the local 
assignment function p~, of a symbol of state S. Then, W is interpreted as 
the class of  all physical objects in D~ which are prepared by activating, 
even iteratively, the apparatus which actualize in i physically equivalent 
preparation procedures collected in the state denoted by S (we briefly say 
in the sequel that W is the class of all physical objects which are prepared 
in i according to the state denoted by S). Our picture does not take into 
account dynamical evolution of states after preparation; if such an evolution 
occurs, we state that any physical object is taken "immediately after" the 
activation of the preparation procedure. 

It must be noted that, consistent with the above intended interpretation, 
we have assumed that 7~ is a partition of D~, since the join of all W e  7g'~ 
must be equal to D~, while two elements W~, W2 c ~/g'i cannot overlap, 
since they are prepared by means of physically inequivalent preparation 
procedures. 

(v) For every i ~ I, every individual variable is associated by the local 
evaluation p~ to a physical object in D~. 

The basic correspondences of our intended interpretation of the 
descriptive signs of L are thus established. Now, let us explain our above 
statement about the conceptual asymmetry of states and effects in the present 
framework. It follows from (iv) that every subset W___ D~ that corresponds 
to a state in a laboratory i is an actual set, since every physical object in 
it is concretely produced by means of a given preparation at some instant 
t that belongs to the time interval (which might be infinite) on which i 
extends [the underlying actuality concept in this definition is classical and 
goes back to Leibnitz; a different concept has been proposed by other 
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authors, e.g., Prior (1957), which we do not accept here]. Hence, we do not 
introduce "conceptual"  states in our approach.  On the contrary, a set T 
that corresponds to an effect is a potential set, since it is conceived of as 
the set of  the physical objects which would be selected by means of  a 
suitable registration procedure (should the test be actually done, the objects 
in T change their state, or also disappear) so that "conceptual"  effects are 
allowed. 

1.4. Truth  F u n c t i o n s  on L.  

The family of  truth functions on the language L with an SS-interpreta- 
tion can be introduced by making use of  standard techniques, which must 
be suitably modified and broadened in order to deal with the new symbols 
in our language, i.e., the statistical quantifiers. 

Definition 1.4.1. Let 9s be an SS-interpretation for the language L =  
(s~, ~ ) ,  and let us make reference to the definitions in Sections 1.1 and 1.2. 

For every x ~ X, i 6 I, o- �9 Z, we define the mapping 

p~:  '#--, ~3~ 

by means of  the following recursive rules. 

(i) For every P c ~ and y ~ X, 
x = y  implies m%(P(y))=pT(P) 
x # y  and pT(y)~pT(P) imply pi%(P(y))=Di 
x # y  and pT(Y)~pT(P) imply p O~(p(y))=~ 

(ii) For every A �9 ~ ,  
pi~(~A) = D,\p,~ 

(iii) For every A, B ~ ~ ,  
Ri~(A ^ B) = p,~ :~ p~(B) 

p,~ v B) = p,~ u R,~(B) 
p,~(A --> B) = (D; \p,~ w pi~ 
p,~(A <--~. B) = (D; \ (p,~ w p,~ u (p,%(A) n p,~ 

(iv) For every A �9 �9 and y �9 X which occurs free in A, 
x = y  and p~~ imply p~~ 
x = y  and pTx(A)~D, imply p ~ ( ( V y ) A ) = O  

o ~ c r  : A ~  x ~ y  implies p~x((Vy)A)=(-)~,~,., p~x~ ) 
Analogously, 
x = y  and p~'~,(A)~O imply p~~ 
x = y  and p i ~ ( A ) = Q  imply p~ ( (3y )A)=2~  

"m l" ~ x # y  1 p i e s  pix((=:ly)A)=( -] .... ~,~,pix'(A) 
(v) For every A, B �9 ~ ,  y �9 X which occ'urs free in A, and for every 

zx�9 ~([0 ,  1]), 
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x = y  and u'(P~(A^B))~A~ imply 
1. ' i (Piy(B)) 

o -  

x = y  and u~(p~y(A^B))~A~ imply 
~,,(p,(B)) 

x ~ y  implies p~~ ) 

pTx((~r~y)A/B) = D, 

p~( ( ~r~y)A/B) = Q 

, , , (p; ,(A A a)) , ) 

v,(pr J 
where the convention is made that the quotients are equal to 1 
whenever the measure in the denominator is zero [equivalently, 

o "  o "  whenever the set ply(B) or pi ; (B) is void]. 

The following proposition collects two basic properties of  the mapping 
p O~ introduced in Definition 1.4.1. 

Proposition 1.4.1. Let ~ be an SS-interpretation for the language L = 
(~ ,  xIr), and let us make reference to the definitions in Sections 1.1 and 1.2 
and to Definition 1.4.1. Furthermore, let i~ I, o-c Z, A e ~ .  

Then, the following statements hold. 
(i) For every x c  X, p~(A) = p~(A).  

(ii) For every x e X, 

pT(x) e pi~(A) iff for every y c X, PT(Y) ~ pTy(A) 

[hence, for every x, y e  X, p~(x) ~ p~(A) iff pT"(Y) E p~y(A)]. 

Proof. See Garola (1989). 

Definition 1.4.2. Let ~ be an SS-interpretation for the language L =  
(~ ,  ~ ) ,  and let us make reference to the definitions in Sections 1.1 and 1.2 
and to Definition 1.4.1. 

Let ~ ( I )  be the power set of L For every cr ~ E we define the mapping 

~ :  ,I, ~ ~ , ( I )  

by means of the following recursive rules. 

(i) For every x e X, P c ~, 

f f ' (P(x) )  = { i c  I loP(x)  r oF(P)} 
(ii) For every A ~ ~ ,  

t;~(~X) = I \ / ~ ( A )  

(iii) For every A, B ~ q~, 

~ ( A  ^ B) = f;~ (A) r~/~(B) 
f;~(A v B) = / ~ ( A )  u / ~ ( S )  

f f ' ( A ~  B) = ( I \ / ~ ( A ) )  u/5~(S) 

/~~ <---~ B) = ( I \ ( f f ' ( A )  u/~~ u ( f f ' (A)  ~ ~~  
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(iv) For every A ~ �9 and x ~ X, x free in A, 

~ ( ( V x ) A ) =  ~ fT~x(A) 
o~ ~ ~o-,x 

(v) For every A, B~q~, x ~ X ,  x free in A, and Ac ~( [0 ,  1]), 

where the convention is made that the quotient in parentheses is equal to 
1 whenever pi~ = Q [or, equivalently, whenever ~'i(pi~(B)) = 0]. 

The statements in the following proposit ion exhibit the connection 
between the mappings P~ and ~ introduced in Definitions 1.4.1 and 1.4.2, 
respectively. 

Proposition 1.4.2. Let ~ be an SS-interpretation for the language L = 
(~ ,  ~ ) ,  and let us make reference to the definitions in Sections 1.1 and 1.2 
and to Definitions 1.4.1 and 1.4.2. Furthermore, let i~ I ,  o'~E, A ~ ,  
and x ~ X .  

Then, the following statements hold. 
(i) f i ~ ( A ) = { i c l l p T ( x ) ~ p ~ ( A ) }  

~ A  = { i ~ I l f o r e v e r y  y~X, pT(y)cp,y( )} 
(ii) p~(A)  = {p~(x)  c Di [o'x c ~ ,~ ,  o-~ : i ~/~Z~(A)} 

Proof. See Garola  (1989). 

Definition 1,4.3. Let ~ be an SS-interpretation for the language L = 
(M, o/), and let us make reference to the definitions in Sections 1.1 and 1.2 
and to Definition 1.4.2. 

For every i ~ I and cr ~ "Y we call the truth function on qY the mapping 

f,~: ,I,--,{0, 1} 
defined by means of the mapping fi~" as follows: 

forevery  A~xI t, f ~ ( A ) = l  iff i ~ ( A )  

We call a formal statistical semantic model for the language L = (M, ~ )  
(briefly, SS-model) the pair ~ = (~g, { f ~ } ~ . ~ ) .  

Furthermore, we define the following different modes of truth in the 
SS-model 932. 

(i) Let i ~ / ,  o- ~ ~, A c ~ ;  we say that A is contingently true (briefly, 
p7 ~ A) if[ f,~(A) = 1. 

(ii) Let i ~ / ,  A ~ ~ ;  we say that i verifies A (briefly, i ~ A) iff for every 
o" c E, f ,~(A) = 1. 



Classical Foundations of Quantum Logic 13 

(iii) Let tr ~ E, A ~ ~ ;  we say that tr verifies A (briefly, tr ~ A) iff for 
every i ~ I, f~  (A) = 1. 

(iv) Let Ac  ~ ;  we say that A is true in ~3~ (briefly, ~ x  A) if[ for every 
i c I  and cr~E, f ~ ( A ) =  1. 

Finally, for every A~ �9 we say that A is logically true (briefly, ~L A) 
iff for every SS-model ~ ,  ~,j.~ A. 

1.5. The Intended Interpretation of  L 

As observed at the beginning of Section 1.4, the truth function in 
Definition 1.4.3 is introduced by adapting standard techniques to our 
present framework. In particular, the mapping /~  in Definition 1.4.2, 
hence f~  in Definition 1.4.3, is defined so that atomic formulas, classical 
connectives, and classical quantifiers can be endowed with a standard 
interpretation. 

Thus, bearing in mind our intended interpretation in Section 1.3, an 
atomic wff of the form E(x), with x ~ X and E ~ ~, can be interpreted in 
terms of natural language as follows: 

"The physical object denoted by x has the property that it would be 
selected by any procedure, theoretical or not, belonging to the effect denoted 
by E (briefly, by the effect denoted by E)." 

Furthermore, atomic wffs of the form S(x), with x c X and S ~ ~, can 
be interpreted as follows: 

"The physical object denoted by x has been prepared according to one 
of the preparations collected in the state denoted by S (briefly, according 
to the state denoted by S)." 

Finally, every molecular wff where statistical quantifiers do not appear 
has a standard interpretation. 

Let us come now to the formulas in �9 which contain statistical quan- 
tifiers. Here t~ '~, hence f~ ,  is defined, by making use of the mapping p~,  in 
such a way that any wff of  the form (7rax)A/B can be interpreted in terms 
of natural language about conditional frequencies as follows: 

"The physical objects which have the property expressed by B also 
have the property expressed by A with a frequency which lies in the Borel 
set A." 

It must be noted that we assume in this interpretation that the measure 
function ui reduces to the number of elements of its argument and that a 
correspondentistic theory of truth is adopted. 

Under the same assumptions, the above interpretation becomes more 
simple and intuitive whenever B = ~(x) and A = {r}, with r z [0, 1]. Indeed, 
in this case the wff (r reduces to (r and it can be interpreted 
as follows: 
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"The physical objects have the property expressed by A with 
frequency r." 

Hence, every molecular  wff containing statistical quantifiers can be 
interpreted by applying recursively classical rules of  interpretation for 
classical connectives and quantifiers together with the above rule. Thus, the 
interpretation of  our formal language L is complete. 

It is important  to notice that Propositions 1.4.1 and 1.4.2 can be 
considered as adequacy theorems, which establish some properties that are 
intuitively required to hold, for every A ~ ~ ,  if the aforesaid conception of 
truth is adopted. In particular, it follows from statement (i) in Proposition 
1.4.2 and from Definition 1.4.3 that f ~ ( A ) =  1 if[ for every x c X, pT(x) 
pi%(A). This shows that our definitions are consistent with the Tarski concep- 
tion of truth. We observe explicitly that in the above intuitive interpretation 
of (r no reference to a concept of  abstract probabili ty appears. This 
is an important  feature, which we discuss more extensively in the sequel. 

Finally, we note that our present semantic model allows the definition 
of different modes of truth for every A ~ ,  which are schematized in 
Definition 1.4.3. This is relevant from an epistemological point of  view. 
Indeed, whenever a wff A is such that it is not logically true, but some 
subset ~*-< ~ of interpretations of  the variables exists such that, for every 

c E*, o- verifies A, then A is true in every laboratory under the interpreta- 
tions in E*, hence it expresses some kind of empirical necessity. 

Whenever ~ * =  E this necessity seems to characterize the truth mode 
of  any A ~ �9 following from a scheme of formulas which formally expresses 
a physical law (hence any A of this kind should be true in 93~). In our 
opinion, the truth mode of  such formulas is actually weaker, as we discuss 
in Section 1.8. 

1.6. Statistical Quantifiers 

It can be easily recognized that the truth function introduced in Section 
1.4 is defined in such a way that all standard properties of  the truth function 
for a classical predicate calculus of  the first order hold. 

In addition, there are some new properties regarding wffs where statis- 
tical quantifiers appear;  we limit our attention in this section to these 
properties only. Then, the following proposit ion shows that the existential 
and universal quantifiers can be considered as particular cases of  statistical 
quantifiers, consistent with the intuitive interpretation of the latter discussed 
in Section 1.5. 

Proposition 1.6.1. Let ~2~ be an SS-model for the language L = (~r qs), 
and let us make reference to the definition in Sections 1.1 and 1.2 and to 



Classical Foundations of Quantum Logic 15 

Definition 1.4.3. Furthermore, let i c I, ~r e E, A, B e ~ ,  x e X, with x free 
in A. 

Then, the following statements hold. 
(i) f~((~r,x)A/B) =f~r((Vx)(B ~ A)) 

[hence, in particular, f~((~r lx)A)=f~((Vx)A)] .  
(ii) f~((~rox)A/B) =f~(-~(3x)(B ~ A)) 

[hence, in particular, f~(~(zr0x)A)=f/~((3x)A)] .  

Proof See Garola (1989). 

The following proposition collects some semantic properties of  the 
statistical quantifiers which could be easily predicted based on the intuitive 
interpretation discussed in Section 1.5, this proves that our abstract 
definition of truth function in Section 1.4 is adequate to the interpretation 
that we have in mind for our language. 

Proposition 1.6.2. Let ~ be an SS-model for the language L = (~/, ~ ) ,  
and let us make reference to the definitions in Sections 1.1 and 1.2 and to 
Definition 1.4.3. Furthermore, let i e I, t r e  Z, A, B e ~ ,  x e X. 

Then, the following statements hold. 
(i) Let x be free in A. Then, a unique r e  [0, 1] exists such that 

f~((~rrx)A/B) = 1 

and precisely 

r = v,(pi~(A ^ B))/vi(Pi~(B)) 

(ii) Let x be free in A, re[O,  1]. Then, 

f~((CrrX) "TA) =fo.((TTl_rX)A ) 

(iii) Let x be free in A, A1, A2e ~([0 ,  1]), A1 c~ A2 = Q. Then, 

f~((cr:hx)A/B ) = 1 implies f~,((qra2x)A/B)=0 

(iv) Let x be free in A and B, Ac ~( [0 ,  1]). Then, for every crxeE .. . .  

f=,(A)=f/~x(B ) implies f~((~r~x)A)--f=((zr~x)B) 

(v) Let A be closed. Then, 

iverifies A iff Ais contingently true 

[equivalently, for every or1, ty2 e E, f,~l(A) = 1 if[ f~r2(A) -- 1]. 

Proof See Garola (1989). 

1.7. Probabil ity Structure 

In the definition of an SS-model for a language L introduced in Section 
1.2, the set I of laboratories is not required to be endowed with some 
algebraic or topological structure. The following definition selects a subclass 
of models such that I is a probability space. 
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Definition 1.7.1. Let ~ be an SS-model for the language L =  (~r ~ ) ,  
and let us make reference to the definitions in Sections 1.1, 1.2, and 1.4. 

We say that 9)2 is endowed with a probabili ty structure (briefly, that 
92~ is a PSS-model) whenever the following conditions hold. 

(i) A o--algebra F of  subsets of  I is given such that, for every o-e E 
and A e ~ ,  f i~(A)eF.  

(ii) A probabil i ty measure /z  is defined on F [hence the triple (/, F, /z)  
is a probabil i ty space in the usual sense]. 

Let 932 be a PSS-model. Then, the following further levels of  truth will 
be defined, besides the levels introduced in Definition 1.4.3. 

Let o-e E, A e ~ ;  we say that (r verifies A almost everywhere (briefly 
or ~ .... A) iff some/~ = a.e.] exists such that, for every i e ~ f ~ ( A ) =  1. 

Let A e qt; we say that A is true almost everywhere in ~Y~ (briefly, ~,~3~" A) 
iff some I =a.~. I exists such that, for every i e L o- e Y, f ~ ( A )  -: 1. 

1.8. Frequency and Probability 

The introduction of a probabili ty structure on ~ in Definition 1.7.1 
has been done with the aim of  providing a suitable background for charac- 
terizing the truth mode of  physical laws. But we must still take into account 
that no sign interpreted in terms of probabili ty has been introduced in L, 
while probabilistic laws occur in QP; thus, the discussion of the truth mode 
of physical laws requires an extension of the language L that can be obtained, 
whenever ~ is a PSS model, by making use of  the probabili ty structure in 
order to formalize the concept of  conditional probabili ty that a statement 
A be true whenever a statement B is true. More specifically, one can extend 
the language L = (~r ~ )  introduced in Definition 1.1.2 into a new language 
Ln by means of  a family {II~}a~(t0.1~ of operators which operate on pairs 
(A, B) of  wffs of  ~ ,  so as to obtain new wffs of  the form Ha(A/B),  and by 
means of  a suitable extension to Lri of  the formation rules in Definition 
1.1.2; the semantic model 9J~ can then be extended into a model ~ n  by 
setting, for every (r e E, A, B e 'It, A e ~ ( [0 ,  1]), 

/z ( /~(A A B)) 
~ ( H A ( A / B ) )  = I iff e A 

~(F~(B)) 

f i '~( I IA(A/B))=Q if[ t x (P~(A^B) )~A 
~(y(B)) 

and by suitably extending Definitions 1.4.2 and 1.4.3 to the set ~tn of  wffs 
in Ln. As a consequence of  this extension of the semantic model, any wff 
of  the form Ha(A/B)  can be interpreted as follows: 

"The value of the conditional probability that the statement A holds 
whenever B holds lies in the Borel set A." 
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We underline that the concepts of  frequency and of probability are 
neatly separated in the extended language Ln,  both at the syntactic and at 
the semantic level. At the former level, the concept of frequency is formalized 
by means of  statistical quantifiers, while the concept of conditional probabil- 
ity for statements is expressed by means of operators. At the latter level, 
the truth function for a statement on frequency is evaluated by counting 
physical objects inside a laboratory, while the evaluation of  the truth 
function for a statement on probability requires measures on suitable subsets 
of L It should also be stressed that the definition of probability introduced 
here is a statistical definition [in the sense clarified by Carnap (1966)], since 
it is stated by making reference to a measure on the set of laboratories, 
each laboratory being a part of the actual world; hence it must not be 
confused with the "logical" probability that can be introduced, via possible 
worlds, in Kripke semantics (Hintikka, 1965, 1966). 

Now, let us consider a probabilistic physical law; it is apparent that 
such a law can be formally expressed by means of a (metalinguistic) scheme 
of  formulas of Ln,  and every formula A of Ln following from this scheme 
(which will be said to particularize a probabilistic physical law) takes the 
form A = (Vx)IIrB [where the convention is adopted of writing l-It in place 
of II~r~, and B in place of B/~(x)], with r c [0, 1], x an individual variable, 
B 6 qtn, x free in B, B closed with respect to every variable y #  x which 
occurs in it; for simplicity, we assume in the sequel that B e ~ .  Then, 
the metalinguistic statement that A particularizes a physical law is equivalent 
to assert that, for every o- ~ Y., B has a probability r in every laboratory (i.e., 
it is true in a subset of laboratories having measure r); in symbols, ~ r  IIrB 
or, equivalently, ~,~j~ A. Thus, we briefly say that ~,~ denotes the truth mode 
of a probabilistic physical law in Ln. 

Yet, we do not intend to make use of Ln and of  probability concepts 
in the present paper. This requires that schemes of formulas of Ln which 
express probabilistic laws be substituted by schemes of formulas of L with 
a suitable truth mode. Such a substitution can be obtained at once in the 
case of a deterministic physical law, which obviously takes the form A = 
(Vx)II~B; indeed we get in this case 

~YI~B iff foreverytr~Y., f i~(II1B)=I iff 
~R 

foreverytr~Y. ,  / z ( f i~(B))=l  iff 

a . e .  

for everyo-~E,  fi~(B) = I iff 

a . e .  a . e .  

for every o-cE,  fi~((Vx)B) = I iff ~ (Vx)B 
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Hence, every deterministic physical law can be expressed by means of 
a scheme of  formulas of  L whose truth mode is ~}~ in L. 

In order to generalize this result, we introduce the following prob- 
abil i ty-frequency correlation principle (briefly, PFC principle). 

PFC. Let ~02 be a PSS model for the language L = (M, ~ )  and let us 
make reference to the definitions in Sections 1.1-1.7. Let e, r 1 c R § R § 
being the set of  positive reals. We say that the measure /z  on F is e-reliable 
within the deviation rl if for every r e [ 0 ,  1], x e X ,  BeXF, x free in B, B 
closed with respect to every variable y # x, the following implication holds: 

~,j~eH,B implies for every cr e X, /x(t;~((rrax)B))___l-e 

with A =[r--~?,  r +  ~/] n [0, 1]. 
Then, for every e, rl 6 R § every SS-model ~ which bears the physical 

interpretation specified in Section 1.3 can be endowed with a probabili ty 
structure such that the measure /z  is e-reliable within the deviation rb 

Our introduction of  the PFC principle can be intuitively justified as 
follows. Whenever a statement A is made in physics about the probability 
that a physical system has the property expressed by another statement B, 
there are some pretheoretical methodological criteria which allow us to 
select in I a subset I of  laboratories, such that we can " a  priori" predict 
that the frequency of the aforesaid property approaches probabili ty within 
a prefixed interval in a prefixed percentage of laboratories in i (in particular, 
the "law of large numbers"  of  statistics can be assumed as basic criterion; 
in this case, I is such that for every i c I the domain Di contains a " large" 
number  of  physical objects). Then, the measure/~  can be concentrated on 
I, so that the PFC principle holds. 

Now, let us assume that 92~ is a PSS model with a measure/~ which is 
e-reliable within the deviation ~7, with e, r/~ R +. Whenever e, ~7 are "smal l"  
we can introduce the following approximations: 

(i) A = {r}. 
(ii) /~(t~((rr ,  x)B)) = 1. 
Whenever (i) and (ii) hold, the implication in the PFC principle 

simplifies as follows: 

H,B implies 

that is, 

a e .  

forevery~r~Y.,  t;~((rrrx)B) = I 

a . e .  

HrB implies ~ (rr,.x)B 
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The above implication is sufficient to conclude that the probabilistic 
physical law IIrB can be substituted by the scheme (rrrx)B of formulas of 
L, whose particularizations are required to be true almost everywhere in 9)2 
according to Definition 1.7.1 (the substitution implies tha t /x  be suitably 
chosen and holds with the degree of approximation that has been specified 
above). Indeed, the metalinguistic statement ~ IIrB must be considered 
a theoretical statement in physics (the set of laboratories is not necessarily 
finite, while a test of the truth value of YIrB would require a test of B in 
every laboratory), the empirical implications of which are exhausted by the 
statement ~,~.i~ (~rx)B, if the measure/x is suitably chosen, within the limits 
of our above approximation. 

We often make use of the aforesaid substitution in the sequel, when 
we state physical laws in terms of frequency (since we make use of schemes 
of formulas of L only) instead of in terms of probability. Whenever this 
procedure occurs, we say that we operate "in statistical approximation." 

2. PSS MODELS FOR PHYSICAL LANGUAGES 

The main purpose of  the present section (Sections 2.1-2.7) is to translate 
into our present framework, via the intended physical interpretation, basic 
semantic relations that hold in the common physical language of CP and 
QP; some are conventions that make our language easier to handle, some 
are known physical laws, and some are physical assumptions that are usually 
left implicit, though they have the truth mode of physical laws. Here they 
take the form of  metalinguistic conditions on the semantic model ~ ,  and 
can be reduced in most cases to schemes of formulas of L with a suitable 
truth mode. 

By making use of the above conditions, a number of results can be 
obtained. In particular, we introduce a new characterization of pure states, 
a preclusivity relation # on the set of pure states, and an (empirical) partial 
order < on the set of the effects; then, we suitably characterize the subsets 
~fo and ~E of operational (or fuzzy) and exact effects, respectively (the 
latter corresponding to exact procedures which test physical properties) 
and show that the poset (~e,  <)  turns out to be a complete orthocomple- 
mented lattice, which is a well-known result in many axiomatic approaches 
to QP. Finally, in Sections 2.6-2.8 the atomicity of (~e,  <),  nonpure states, 
and entities are discussed. 

2.1. Special ized PSS Models  

We select the subclass of  the irredundant PSS-models by means of two 
conditions which formalize pretheoretical requirements on our language 
that are discussed in Section 2.2. 
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Definition 2.1.1. Let ~ be a PSS-model for the language L = (~ ,  ~ ) ,  
and let us make reference to the definitions in Section 1. 

We say that ~E satisfies the condition of bijectivity on state symbols 
(briefly, SB condition) whenever the following statement holds: 

SB. For every i ~ I, the local assignment function pi maps bijectively 
5o\Kern pi onto ~ 

We say that ~E satisfies the condition of realizability of predicates 
(briefly, PR condition) whenever the following statement holds: 

PR. For every finite subset ~ c_ ~, some subset I~ _c I exists, with 
p~(Ia) ~ 0, such that: 

(i) For every i ~ Ia and P c ~, Pi(P) # •. 
(ii) For every El,  E2 E ~ (~ ~, 

E I # E 2  implies f o r e v e r y i c I ~ ,  p~(E1)r 

Finally, we say that ~3~ is irredundant whenever it satisfies the SB and 
the PR conditions. 

In the subclass of irredundant PSS models a more specialized subclass 
can be selected by means of  further conditions that formalize physical 
properties which hold both in classical and in quantum physics, as discussed 
in more detail in Section 2.2. 

Definition 2.1.2. Let ~g~ be an irredundant PSS model for the language 
L = (~4, ~ ) ,  and let us make reference to the definitions in Section 1 and 
to Definition 2.1.1. 

We say that ~9~ satisfies the condition of observability of states (briefly, 
SO condition) whenever the following statement holds. 

SO. A mapping g~ 5O~ ~ and a subset I =a.e. I exist such that: 
(i) For every i~/2 S ~ ,  pi(S)c_pi(g(S)). 

(ii) For every i 6 / ,  S 6 5O, T 6 J i ,  

pi(S) c_ T implies p,(g(S))~_ T 

Let ~ satisfy the SO condition. We denote by # the binary relation 
on 5O defined as follows. 

For every $1, $2 6 5O, 

S~ # $2 iff for every i ~ ~ p~(S1) c~ p~(g(S2)) = Q. 

Furthermore, for every S c 5 o we say that S is a symbol of  a pure state 
if it belongs to the bijectivity subdomain of g, which is denoted by 5Op; 
we still denote by # (by abuse of language) the restriction to 5Op of  the 
relation # .  
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Finally, we say that ~2~ satisfies the condition of pure states symmetry 
(briefly, SY condition ) iff the following statement holds. 

SY. For every i~ I and S1, $2~ ~p, 

v,(p,(g(S2) ) c~ p,(S1)) _ v,(pi(g(SO ) c~ p,(S2)) 

~,(p~(S,)) v,(p,(S2)) 

The following propositions state some basic consequences of  the SO 
and SY conditions. 

Proposition 2.1.1. Let ~ be an irredundant PSS model for the language 
L = (~r ~ ) ,  and let us make reference to the definitions in Section 1 and 
to Definitions 2.1.1 and 2.1.2. 

Let ~0~ satisfy the SO and SY conditions. Then, the following statements 
hold. 

(i) For every $1, $2 ~ Sap, 

S , = $ 2  iff f o r e v e r y i c ~  p~(S2)c_p~(g(S1)). 

(ii) the binary relation # is nonreflexive and symmetric [briefly, # is 
a preclusivity relation (Cattaneo and Marino, 1988)] on SP,. 

Proof See Garola (1989). 

By making use of the definitions in Section 1 and of Definitions 2.1.1 
and 2.1.2, conditions SB, PR, SO, and SY can be restated as metalinguistic 
schemes of formulas of L whose truth mode is evidenced by means of the 
symbols introduced in Sections 1.4.3 and 1.7.1 (Garola, 1989). 

2.2. The Intended Interpretation for Special ized PSS  Models  

We intend to discuss in this subsection the interpretation of the 
definitions and propositions stated in Section 2.1. 

Let us begin with the SB condition. Bearing in mind our intended 
interpretation, let us require that different symbols of state denote different 
classes of  physically equivalent preparation procedures; then, in every 
laboratory, they must be mapped by the assignment function into different 
(actually, disjoint) sets of physical objects whenever they are not mapped 
into the empty set. It is apparent that our condition SB formalizes this 
economy condition on symbols. 

Second, let us consider condition PR. It is trivially true in every physical 
theory that the elements of every finite subset of effects or states can be 
simultaneously represented by means of nonempty subsets of  physical 
objects, and that this can be done in a set of laboratories which is as large 
as desired. Then, (i) in condition PR formalizes this property. 
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Furthermore,  let us require that different symbols of  effects correspond 
to different classes of  physically equivalent registration procedures; then 
they must be mapped  by the assignment function on sets of  physical objects 
which do not coincide (though they may overlap) in a number  of  laboratories 
which is as large as desired. Statement (ii) in condition PR obviously 
formalizes this requirement. 

It should be noted that the SB and PR (metalinguistic) conditions have 
a different logical status with respect to the SO and SY conditions in 
Definition 2.1.2. Indeed, the former can be fulfilled by suitably modifying 
(if needed) the set of  predicates, while the latter impose that some relations 
on sets of  physical objects inside (almost) every laboratory hold, as we shall 
presently discuss. Thus, the SB and PR conditions establish analytical 
properties of  the language L, while the SO and SY conditions impose that 
some physical laws hold which can be expressed by means of statements 
of  L. 

Let us comment  now on Definition 2.1.2, and let us begin with condition 
SO. By analyzing CP and QP, one concludes that in both theories the 
following property can be proved to hold. Let us consider any physical 
state which is actualized in a laboratory i by a set of  apparatus that prepares 
a class W of physical objects; then, some effect can be made to correspond 
to this state, which is actualized in the laboratory i by a set of  apparatus 
that select a class T of physical objects, such that (i) it is "almost  certain" 
for the given state (i.e., in almost every laboratory i any object in W gives 
the yes answer if tested with an apparatus in the effect, so that W ~  T); 
(ii) it is minimal in the class of  all effects which are almost certain for the 
given state (i.e., in almost every laboratory i the class T is minimal in the 
set of  the classes selected by apparatus which give the yes answer for every 
object in W). Indeed, this effect can be considered as the effect which tests 
"whether  a physical object is in the corresponding state." Then, it follows 
from the intended interpretation discussed in Section 1.3 that the assumption 
about the existence of a mapping g and statements (i), (ii) in condition SO 
formalize the above property. 

It should be stressed that this property holds both in CP and in QP. 
It should also be noted that in both physical theories the correspondence 
between states and minimal effects is not one-to-one, so that the pure states 
can be characterized by the property that different pure states are associated 
with different minimal effects. This justifies, via the intended interpretation, 
the name "symbols  of  pure states" given to the elements of  the bijectivity 
subdomain of g in Definition 2.1.2. 

It is relevant to observe that, consistent with our above physical interpre- 
tation, we expect that for every pair of  symbols of pure states S~, $2, with 
S~ ~ S2, and for every i c i, the set pi(S2)c~ p/(g(Sl))  of  the physical objects 
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prepared according to the state denoted by $2 which are selected by the 
minimal effect denoted by g(S~) and associated with S~ must be assumed 
to be void in CP, while it can be nonvoid in QP if the states denoted by $1 
and $2 are suitably chosen; in any case the inclusion pi(S2)_c pi(g(Sl)) 
cannot be true almost everywhere, because of Proposition 2.1.1, statement 
(i). We believe that this remark focuses one of  the deeper differences between 
CP and QP; in fact, the quantum behavior illustrated above establishes the 
breakdown of strict determinism in the latter theory. Indeed, different 
physical objects in p~(S2), though equivalently prepared (i.e., satisfying 
identical boundary conditions), since they belong to the realization 
in i of  the same pure state, may exhibit different physical properties in 
QP, some of them sharing the property corresponding to g (S0 ,  some of 
them not. 

Let us come to the relation # .  The basic idea for introducing it is that 
two pure states can be considered "completely different" whenever in almost 
every laboratory no physical object prepared according to one of them is 
selected by the minimal effect associated to the other one; this is exactly 
what occurs, according to CP, in almost every laboratory iff the states are 
different, and according to QP iff they are "or thogonal"  (that is, the projec- 
tion operator that represents one of them is orthogonal to the projection 
operator that represents the other). Thus, # can be identified with known 
relations in CP and in QP whenever our intended interpretation in Section 
1.3 is adopted. 

Let us discuss now the SY condition. According to our intended 
interpretation, this condition says that the selection frequency of physical 
objects prepared according to a given state by means of apparatus which 
test whether these objects are in another state is equal to the selection 
frequency that occurs whenever the roles of the two states are exchanged. 
Therefore, the SY condition establishes a kind of symmetry between pure 
states which trivially holds in CP. In QP a similar symmetry holds; yet it 
is expressed in terms of probabilities, not in terms of frequencies. According 
to our analysis in Section 1.8 of probabilistic physical laws, every statement 
about probability can be substituted by a statement about frequencies "in 
statistical approximation" (the meaning of this expression has been specified 
in detail in Section 1.8), inside every laboratory, where only frequencies 
can be actually evaluated (the intuitive basis for the substitution is the 
following: we expect that the differences between frequencies and prob- 
ability values are small in most laboratories whenever the number of 
physical objects that are taken into account is high). Therefore, the SY 
condition, which holds exactly in CP, must be considered in QP as 
formalizing the above quantum symmetry between states in the statistical 
approximation. 
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Finally, we note that, whenever the SY condition holds, the binary 
relation # is a preclusivity relation on 5ep [Proposition 2.1.1, (ii)], hence, 
via the intended interpretation, on pure states; this result is consistent with 
our above remarks on the particularization of # in CP and in QP, and it 
gives further support to our decision of stating the SY condition as a basic 
condition for our semantic model. 

2.3. Mathematical Interlude 

In the following proposition we collect some results that will be used 
throughout in the sequel. 

Proposition 2.3.1. Let 5r be a set, let # be a preclusivity (i.e., non- 
reflexive and symmetric) relation on 5r and let ~(Se) be the power set of 
5r Then, the mapping 

• He~(Se)_~H• S # S * } e ~ ( S e )  

is a weak orthocomplementation on (~(5r ~).3 
Furthermore, let us put ~ = {H e ~(5r I H = H• Then, the following 

statements hold. 
(i) O, S r  and Q •  Sr 5r177 

(ii) (~,  c ) is a complete lattice, with minimal element O and maximal 
element 5 ~. 

(iii) Let n and U denote meet and joint in (~,  _ )  respectively. Then, 
for every subset ~ e ~,  

A H = ~ - ] H  
H ~ 7 / "  H ~  r 

U H= H" 
H c ~ "  ~ 

(iv) The restriction • (by abuse of language) of the mapping " to 
is a standard orthocomplementation 4 on (~,  _ ). 

Proof. Straightforward. �9 

2.4. Fuzzy Effects and the Lattice of  Exact Effects 

The following definition introduces some mappings and relations which 
restate in our present framework known concepts in the foundations of  QP. 

3Equivalent ly ,  the fo l lowing  s ta tements  hold.  (i) For  every H e ~'(Se), H _c H •177 (ii) For  every  
H E ~(5r  H n H ~ = Q. (i i i)  For  every H1, H2 e ~(Se) ,  H 1 c_ H2 impl ies  H i  ~_ H~-. 

4Equiva len t ly ,  the fo l lowing  s ta tements  hold.  (i) For  every H c ~ ,  H = H • (ii) For  every  
H c Zr H f3 H ~ = ~ and  H U H • = :50. (iii) For  every H I ,  H 2 e ZP, H I _c//2 impl ies  H~- _ H i  L . 
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Definition 2.4.1. Let ~ be an irredundant PSS model for the language 
L= (~4, ~ ) ,  and let us make reference to the definitions in Sections 1 and 
2.1. Furthermore,  let ~ satisfy the SO and SY conditions. 

We denote by ST and SF the mappings of  g into the power set ~(5~p) 
defined as follows: 

ST : E ~ g -~ {S c 5~e [ for every i c i, pi(S) _c pi(E)} ~ ~(5r 

SF : E ~ g + {S ~ 5~v [ for every i ~ i, pi(S) c~ pi(E) = Q} ~ ~(5r 

and for every E e  g we call ST(E) the certainly yes domain of E, and SF(E) 
the certainly no domain of  E. 

We denote by < the quasi-order relation on g defined as follows: 

f o r e v e r y E 1 , E 2 ~ g ,  E l < E 2  iff ST(EOc_Sr(E2) 

and denote by ~ the equivalence relation on g defined as follows: 

for every El, E2 c g, E~ ~- E2 if[ E~ < E2 and E2 < E1 

[equivalently, E~ ~ E2 iff ST(E1)= ST(E2)]. 

Furthermore,  the following definition shows that complete ortho- 
complemented lattices can appear  in physics because of the existence of  a 
preclusivity relation on the set of  pure states. 

Definition 2.4.2. Let ~ be an irredundant PSS model for the language 
L = (~4, ~ ) ,  and let us make reference to the definitions in Sections 1 and 
2.1, and to Proposition 2.3.1. Furthermore, let ~0~ satisfy the SO and SY 
conditions, and let ~(5r be the power set of  5r 

We denote by i the weak or thocomplementat ion on (~(6ee),  _ )  
defined as follows: 

• HE~(b~v)~  H ~ = { S ~ S P p l f o r e v e r y S * ~ H , S # S * } ~ _ ~ p )  

Moreover,  we put 

= {H ~ @(S~ l H = H •177 

and denote by U and fl join and meet, respectively, in the complete 
or thocomplemented lattice (~,  Q, c_, ~) with minimal element Q. 

We can now formally introduce the subsets of operational and exact 
effects. 

Definition 2.4.3. Let ~0~ be an irredundant PSS model for the language 
L = (~ ,  ~ ) ,  and let us make reference to the definitions in Sections 1 and 
2.1 and to Definitions 2.4.1 and 2.4.2. Furthermore,  let ~ satisfy the SO 
and SY conditions. 
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We say that ~ satisfies the condition of operationality and exactness 
(briefly, OE condition) whenever the following statement holds. 

OE. Two subsets ~o and ~E of ~ are defined such that: 
(i) For every E~ ~o, Sr(E)eAf.  

(ii) For every E ~ e ,  S T - ( E ) ~  and SF(E)=S~-(E) [hence 
& ( E )  ~ s 

(iii) ~E ~ ~ o .  
Whenever 932 satisfies the OE condition, we say that ~o and ~e are 

the sets of  symbols of  operational (or fuzzy) and exact effects, respectively. 
In addition, we respectively denote, by abuse of  language, by < and ~ the 
restrictions to ~o, or to ~ ,  of the binary relations < and ~ defined on ~; 
we also denote by < the order relation canonically induced on ~ o / ~  by 
the quasi-order < defined on ~o. 

By making use of  Definition 2.4.3, some further conditions can be 
required to hold in an irredundant PSS model which formalize properties 
of  operational and exact effects. 

Definition 2.4.4. Let 93~ be an irredundant PSS model for the language 
L = (M, ~ ) ,  and let us make reference to the definitions in Sections 1 and 
2.1, and to definitions 2.4.1-2.4.3. Furthermore, let ~ satisfy the SO, SY, 
and OE conditions. 

We say that ~3~ satisfies the condition of existence of the complement 
(briefly, CE condition) whenever the following statement holds. 

CE. For every E c ~o, an E'~ ~o exists such that, for every i~i~ 
pi(E') = D,\p~(E). 

We say that ~9~ satisfies the condition of  exact measurability (briefly, 
EM condition) whenever the following statement holds. 

EM. for every E1 ~ ~'e, E2 ~ ~o, 

E~'<E2 implies f o r e v e r y i ~  p~(E1)_cp~(E2) 

We say that ~ satisfies the condition of completeness of the exact effects 
(briefly, EC condition) whenever the following statement holds. 

EC. The restriction SrE of the mapping Sr to $'z maps surjectively 
~z onto ~.  

Finally, we say that an irredundant PSS model ~ is a physical model 
whenever it satisfies the SO, SY, OE, CE, EM, and EC conditions. 

The following propositions collect some relevant properties of physical 
models. 
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Proposition 2.4.1. Let ~ff~ be a physical model for the language L--  
(M, q~), and let us make reference to the definitions in Sections 1 and 2.1, 
and to Definitions 2.4.1-2.4.4. 

Then, the following statements hold. 
(i) For every El,  E2~ gE 

EI<:E2 iff for every i ~ I, pi(E1)~pi(E2) 

(ii) The relation -< is a partial order on gE. 
(iii) The restriction Sre of  ST to g~ is an order isomorphism of (gE, < ) 

onto (~,  Q, __, l) .  
(iv) The poset (gE, <)  is a complete lattice (with minimal element 0 

and maximal element ~), and the mapping (which we still denote by _L, by 
abuse of language) 

• Ecg~-~E•  

is a standard orthocomplementation on (gz ,  <).  
(v) The mapping 

'" E c  go-->E'c go 

is well defined; moreover, it maps bijectively go onto itself, and its restriction 
to ge (which we still denote by ' by abuse of language) coincides with the 
standard orthocomplementation • 

Proof. See Garola (1989). 

Proposition 2.4.2. Let ~R be a physical model for the language L = 
(M, ~ ) ,  and let us make reference to the definitions in Section 1 and 2.1 
and to Definitions 2.4.1-2.4.4. 

Then, the following statements hold. 
(i) For every E c go, Se(E)c_ (St (E))  j- [hence, for every Ee C gE, 

Ee ~ E  implies SE(E) _ SF(Ee)]. 
(ii) For every E e go,  one and only one Ee ~ gE exists which is 

-~-equivalent to E. 
(iii) For every E e go, the mapping 

~: [E]= ~ go/~--+ E~ ~ g~ c~ [E]~ 

is well defined, and it is an order isomorphism of ( g o / ~ ,  <)  onto (g~, <).  
(iv) The poset ( g o / ~ ,  <)  is a complete lattice, with minimal element 

[0]~ and maximal element [~]~, and the mapping (which we still denote 
by ", by abuse of language). 

~: [El= c g o / =  -+ [E]L = ~'-'(ff([E]~) l )  c g o / =  

is a standard orthocomplementation on ( g o / ~ ,  <).  
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(v) Let Sro and STE be the restrictions of  ST to ~o and ~e respectively, 
and let us put 

~bo: E~ ~ o - - > [ E ] ~  ~ o / ~  

Then, the following diagram (where ~" and SrE are order isomorphisms) 

STO 

~ o l  ~- , ~E 

is commutative; furthermore, Sro and ~bo are surjective and quasi-order 
preserving. 

Proof See Garola (1989). 

2.5. The Intended Interpretation of the Sets 8 o  and 8E 

The definitions in Section 2.4 restate in our present framework a set 
of  concepts and relations which are standard in some approaches to the 
foundations of  QP (though they also hold in CP). Our present treatment, 
where the semantic model is explicit and formalized, and every relation 
between predicates is defined, through the assignment function, by means 
of  relations between sets of physical objects inside laboratories, has the 
advantage of  making the empirical interpretation of the aforesaid concepts 
and relations more immediate, also providing an intuitive justification for 
many definitions. 

More specifically, let us consider Definition 2.4.1 and let E denote an 
effect which can be actualized by means of a suitable dicotomic apparatus 
in every laboratory (i.e., which is "operat ional"  in the sense specified in 
Section 1.3). It follows from the definition of ST (via the intended interpreta- 
tion) that a symbol of state S belongs to the certainly yes domain of  E iff 
all the physical objects prepared according to the state denoted by S give 
the yes answer in almost every laboratory whenever tested by means of any 
apparatus which actualizes the effect denoted by E. An analogous property 
characterizes the certainly no domain of  E, with the no answer in place of 
the yes answer. Then, the quasi-order relation < and the equivalence relation 

on ~ can be introduced without any explicit reference the extensions of  
the predicates in ~. 

Let us come now to condition OE in Definition 2.4.3. The sets ~o and 
~E are defined by making reference to formal properties of the certainly 
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yes and certainly no domains of their elements, which could be reformulated 
as metalinguistic schemes of  formulas of L having the truth mode of physical 
laws. We make here a new assumption in our intended interpretation by 
stating that the symbols of operational effects must be interpreted as nouns 
of those effects which are "operat ional"  in the sense specified in Section 
1.3 (we recall that we do not assume in our basic interpretation that all 

effects are operational in this sense). Moreover, every symbol of exact effect 
is interpreted as a noun of  an operational effect that is actualized by an 
idealized dichotomic device which exactly tests whether the value of a given 
physical observable lies in a given Borel subset of the real line (briefly, 
which exactly tests whether a given "physical property" holdsS). 

Bearing in mind this interpretation, the properties in the OE condition 
can be seen to formalize physical laws that hold both in CP and QP. 
Furthermore, condition CE in Definition 2.4.4 can immediately be justified; 
indeed, for every symbol of operational effect E, the symbol of effect E' 
can be interpreted as denoting the effect which is actualized in every 
laboratory by the same apparatus that actualize the effect denoted by E, in 
each apparatus the yes and no answer being exchanged. For it is apparent 
that every apparatus of the latter kind will select a set of physical objects 
in the laboratory i ~ I which is the complement of the set of  objects selected 
by any apparatus that actualizes the effect denoted by E. 

By making use of the above interpretation, condition EM in Definition 
2.4.4 can also be partially justified, since it can be said to express the 
"fuzziness" of  the elements in ~o. Indeed, it implies that for every symbol 
of effect E2 which belongs to ~ o / ~  some physical objects may exist in 
almost every laboratory which would give the yes answer if tested by an 
apparatus which actualizes the effect denoted by E2, while they would give 
the no answer if tested by an ideal apparatus which actualizes any exact 
effect, which we denote by El,  such that E1 < E2 (in particular, such that 
El ~E2);  indeed, this is a reasonable requirement both in CP and in QP. 

Finally, the EC condition in Definition 2.4.4, which obviously implies 
that every E c  ~ such that S T ( E ) c ~  and SF (E)=S ~(E)  is a symbol of 
exact effect, can be partially justified by observing that it also implies that, 
for every E ~ ~ o / ~ e ,  at least one symbol of exact effect Ee exists which is 
=-equivalent to E and denotes a physical property of which E denotes a 

SThe minimal effect associated with a state according to the SO condition in Definition 2.1.2 
is not necessarily "operational" in the sense specified by Definition 2.4.3; if such a property 
is required, it must be stated as a further independent condition (see in particular the EO 
condition in the next subsection); as a matter of fact, this occurs both in CP and in QP. In 
principle, it is conceivable that the "operativity domain" of a physical theory is defined by 
means of theoretical objects; this would happen in our framework if the mapping g were 
such that g(5r ~ ~go. 
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"fuzzy test." Again, this seems a reasonable requirement in most physical 
theories, where idealized elements are unavoidable (or can be avoided at 
the expense of  understability and manageability of  the formal apparatus). 

Let us comment now on some results in Propositions 2.4.1 and 2.4.2. 
It follows from Proposition 2.4.2 that the quasi-order structures on the sets 
~o and ~ ,  which are defined in Definition 2.4.3, can be interconnected, 
the connection being summarized by the commutative diagram in statement 
(v) of Proposition 2.4.2; in the diagram, the posets ( ~ o / ~ ,  <),  ( ~ ,  <),  
and (Sf, c ) are orthocomplemented complete lattices, which are isomorphic. 
This result has, in our opinion, a great explanatory power, since it allows 
us to understand the links between known approaches to the foundations 
of QP [see in particular Mackey (1963), Jauch (1968), Piron (1976), and 
Ludwig (1983)] and it explains the deep reasons why the same mathematical 
structure appears in different approaches where different sets of physical 
concepts are considered primitive. Indeed, it follows from the intended 
interpretation discussed in Section 1.3 that the set ~o is interpreted bijec- 
tively onto the set of "effects" in Ludwig's sense (but it must be carefully 
noted that the partial order - that can be introduced on ~o following 
Ludwig is different from the partial order introduced here; indeed, -< is 
stronger than <).  Furthermore, the set ~ o / ~  can be interpreted bijectively 
onto the set of  "proposit ions" introduced in the Jauch-Piron approach (in 
this case, the order < is analogous to the order introduced by Jauch and 
Piron) and the set ~E on the set of questions introduced by Mackey (the 
restrictions to ~ of < and of  Ludwig's order -< coincide, and both these 
restrictions coincide with the order that can be directly introduced on ~e 
following Mackey; we also notice that the word "question" has a different 
meaning in Piron's and in Mackey's approaches). Thus, the diagram in 
statement (v) of Proposition 2.4.2 exhibits the correlations between the 
fundamental structures of  different theoretical approaches [which we have 
already explored, along with other authors, in the framework of elementary 
QP; see Garola and Solombrino (1983)]; of  course, these are endowed, at 
this stage, with only those properties which hold both in CP and in QP. 

Now let us briefly comment on the epistemological role of the aforesaid 
structures; indeed, in our opinion, this role has often been misunderstood 
in the literature. Our above interpretations of ~o and ~E may help in 
making this point clear, as follows. 

It is well known that every physical theory determines its own range 
of "epistemic accessibility"; in our present framework this range is the set 
of  all formulas of L whose truth values can be tested by means of a suitable 
set of measurements (we reject here the neopositivistic "verification theory 
of  meaning," which leads one to identify meaning and epistemic accessibil- 
ity). Then, intuitively, an empirical (two-valued) logic is obtained by suitably 
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selecting a subset ~a  of formulas in �9 which are epistemically accessible, 
by taking these formulas as atomic wffs of a new language La, by introducing 
new connectives in La which are defined by (empirical) semantic relations 
in ~ .  A suitable basis for the selection of ~a  is usually provided by a set 
of atomic formulas of L that are themselves epistemically accessible; in 
particular, by the set Re(x)= {E(x)c ~ ] E  c Re}, with x ~ X, which can be 
endowed with the partial order < canonically induced by the order < 
defined on Re, so that ( ~ ( x ) ,  <)  is order isomorphic to (Re, <).  

The formal languages L~ and LSe introduced in Section 3, with their 
induced quasi-order relations <, provide concrete examples of the above 
procedures. In the former case, ~ = ~ ( x ) ;  in the latter, 

�9 ~ = {A  6 W IA = ( V x ) ( S ( x )  --> E ( x ) ) ,  x c X,  S ~ 5 ~, E c ~ } 

Let us refer for simplicity to the case ~a  = Re(x) (the other case can be 
discussed along similar lines and leads to similar results). 

We can consider the Lindenbaum-Tarski algebra 92 of L with the usual 
"inferential" order <;  of course, (92, <)  is a Boolean lattice. Let us select 
in 92 the subset 92E (x) of all the elements which contain a (unique, atomic) 
formula of Re(x). 

All the wffs in L that belong to elements of 92e(x) are epistemically 
accessible in the sense specified above (though they do not exhaust the set 
of all epistemically accessible formulas in L); we say that 92z(x) is a set 
of epistemically accessible propositions of 92. Furthermore, the poset 
(92 E (x), <)  is order isomorphic to ( Re (x), <)  [the existence of a one-to-one 
mapping of 92z(x) onto Re(x) is obvious; we prove in Section 3.1 that the 
order is preserved by this mapping] and hence, it is an orthocomplemented 
complete lattice. Yet, its mathematical properties derive from semantic 
relations between the primitive predicates in Re that have the truth mode 
of physical laws, and not necessarily match the properties of (92, <)  [in 
particular, (92e(x), <)  need not be a Boolean lattice], which derive from 
semantic relations between formulas of L that have the truth mode of logical 
laws. Thus, we can consider (Re(x), <)  [or (92E(x), <)]  an "empirical" 
logic, but it must not be confused with some substructure of the Linden- 
baum-Tarski algebra of L, nor can join, meet, and orthocomplementation 
in it be confused with the operations on (92, <) that bear the same name 
[indeed, the embedding of (92e(• <) into (92, <)  preserves the order; it 
does not necessarily preserve lattice operations]. 

This notwithstanding, ( ~  (x), <) [equivalently, (Re, <)]  can be pro- 
moted to the role of model for some kind of algebra of propositions of an 
empirical logic (see Section 3.3); this is usual practice in many approaches 
to QL, where (RE, <)  induces an "algebraic" semantics for QL (e.g., Dalla 
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Chiara, 1977). We must admit our reluctance in considering formal 
languages with this kind of  semantics as full-fledged new logics; our position 
mainly rests on the above remarks about the truth mode of the semantic 
relations that support the lattice properties of (RE, <).  

It is interesting to notice that we will prove in Section 3.4 that our 
distinction between "empirical" and "logical" structures can be neglected 
in CP. Intuitively, this occurs because every molecular formula can be 
associated with an atomic formula in CP which has the same extension in 
almost every laboratory (consistent with the belief that the truth value of  
every physical statement can be directly tested by means of  a suitable 
apparatus), so that the (empirical) semantic relations between atomic for- 
mulas match the (logical) semantic relations between molecular formulas. 
The above distinction cannot be ignored in QP, where the "empirical" and 
the "logical" structures exhibit different mathematical properties. 

We note that there are examples, even in QP, of  an operation sign 
which exhibits semantic properties that are similar to those of a suitable 
logical connective; this has favored confusion between empirical and logical 
structures (see Garola, 1989). 

2.6. Atomicity and Nonpure States 

As we have anticipated in the introductory remarks to Section 2, we 
introduce in the following definition some further conditions on physical 
models which make the lattice (RE, <)  atomic and imply that every nonpure 
state is a mixture in our present framework. 

Definition 2. 6.1. Let ~0~ be a physical model for the language L = (M, ~ ) ,  
and let us make reference to the definitions in Sections 1, 2.1, 2.4. 

We say that ~ satisfies the condition of exact obsemability of states 
(briefly, EO condition) whenever the following statement holds. 

EO. Let S c 50; then, g(S) ~ RE. 

We say that ~ satisfies the condition of invariance of frequency (briefly, 
FI condition) iff the following statement holds. 

FI. For every E c  ~ and S ~ 5  r a real number r e [ 0 ,  1] exists such 
that, for every i ~ I, 

~,(p,(E) • p,(S)) 
- - r  

~,(pi(s)) 

We say that ~ satisfies the mixtures condition (briefly, MS condition) 
iff the following statement holds. 
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MS. For every S~Se, at least one family (Sk)k~ K (K being a set of 
indices) of mutually preclusive symbols of pure states exists such that: 

(i) For every i ~ ~ pi(S) n pi(g(Sk)) is nonvoid, and 

~_J (p,(S) n p,(g(Sk))) = pi(S) 
k c K  

(ii) For every i ~ I and E ~ ~E, 

v,(p~(S) n p~(g(Sk)) n p,(E)) v,(p,(Sk) n p,(E)) 

v;(p,(S) n p,(g(Sk))) z',(p,(Sk)) 

Finally, let ~)~ satisfy the EO, FI, and MS conditions; then, for every 
S ~ 9 ~ we say that S denotes a mixture whenever S ~ Se\~p. 

The following propositions collect some properties of physical r.~odels 
that satisfy the EO, FI, and MS conditions. 

Proposition 2.6.1. Let ~)~ be a physical model for the language L =  
(~,  ~ ) ,  and let us make reference to the definitions in Sections 1, 2.1, and 
2.4 and to Definition 2.6.1. 

Let ~ satisfy the EO condition. Then the lattice (~, Q, c ,  ") is 
atomic, and the set of its atoms is {{S}IS~9~ (hence, also the lattices 
( ~ o / ~ ,  [0]~, <,  ") and ( ~ ,  0, <,  ') are atomic, and the sets of their atoms 
are {[g(S)]~ ]S E 5r and {g(S) IS ~ 5r respectively). 

Proof. See Garola (1989). 

Proposition 2.6.2. Let ~ be a physical model for the language L =  
(~,  ~) ,  and let us make reference to the definitior~s in Sections 1, 2.1, and 
2.4 and to Definition 2.6.1. 

Let ~02 satisfy the EO, FI, and MS conditions, and for every S c 5r 
k ~ K , E ~ E  let us put 

1,,(p~(S) n p,(g(Sk))) 
Ak-- 

~,(p;(s)) 

~,(p,(s) n p,(E)) 
r - -  

~,(p,(S)) 

~',(p,(Sk) n p,(E)) 
rk - l"i(Pi(Sk)) 

Then, whenever the set K of indices in the MS condition is denumer- 
able, the following statements hold. 

(i) r=Ek~K'~krk- 
(ii) ~k~(Ak-= 1. 
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(iii) For every k ~ K, Sk c ST(g(S))  

Proof See Garola (1989). 

2.7. The Intended Interpretation of the EO, FI, and MS Conditions 

The conditions introduced in Definition 2.6.1 can be interpreted and 
physically justified by making use of  the intended physical interpretation 
treated in Sections 1.3 and 2.5. 

Let us begin with the EO condition. Bearing in mind our interpretation 
of  symbols of exact effects in Section 2.5, this condition formalizes the 
requirement that the minimal effect associated with every state by the SO 
condition in Definition 2.1.1 be an exact effect. This requirement sounds 
physically reasonable, since this minimal effect can be interpreted, loosely 
speaking, as the better possible test of whether a physical object is in the 
given state. In addition, condition EO is strongly supported by its consequen- 
ces, since it implies that in every physical model ~Y~ the lattice ( ~ ,  <)  is 
atomic (see Proposition 1.7.1); indeed, atomicity is a fundamental property 
of the basic lattices introduced in many approaches to the foundations of 
physics (see in particular the approaches quoted in Section 2.5), which are 
isomorphic to (~E, 0, <,  '). 

Let us come now to the FI condition in Definition 2.6.1. According to 
our intended interpretation, this condition formalizes the requirement that 
an exact effect selects physical objects prepared according to a given state 
with the same frequency in (almost) every laboratory. Now, according to 
classical and quantum physics, a real number r ~ [0, 1] exists for every state 
and every exact effect which expresses the probability that a physical object 
prepared according to the given state be selected by the given exact effect; 
therefore, the FI condition formalizes this probabilistic physical law in 
statistical approximation (in the sense specified in Section 1.8). 

Finally, let us consider the MS condition. Here, statements (i) and (ii) 
formalize, via our intended interpretation, two assumptions about nonpure 
states that are usual both in CP and in QP. To be precise, statement (i) says 
that for every state denoted by S, some family of mutually preclusive pure 
states exists such that, in (almost) every laboratory i, every physical object 
in pi(S) would be selected by the minimal exact effect (more explicitly, by 
some apparatus which actualizes in i the minimal exact effect) associated 
with a suitable pure state in the family. Whenever the family is unique, as 
in CP (see Section 3.4), this statement translates in our present framework 
the familiar assumption that every physical object prepared according to a 
nonpure state actually "is in some pure state" [since pi(5 ~ is a partition of  
Di in our present approach, these words cannot be endowed here with their 
standard set-theoretic meaning]. Whenever the family is not necessarily 
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unique, as in QP, then for every mixture one privileged family can be chosen 
that admits the same interpretation above [yet it is well known that the 
existence of many equivalent mathematical representations of the same 
mixture in QP is a source of difficulties in the interpretation of the theory 
(e.g., Beltrametti and Cassinelli, 1981)]. Then, statement (ii) says that, if 
one takes into account those physical objects in p~(S) that "are in the pure 
state denoted by Sk" (in the sense specified above) and evaluates the 
percentage of  these that would be selected by a given exact effect, one finds 
the same value obtained whenever the percentage is evaluated of individual 
systems in Pi(Sk) that would be selected by the same effect. This is an 
intuitive and known physical law if statistical percentages are substituted 
with selection probabilities; therefore, our statement (ii) formalizes a prob- 
abilistic physical law in the statistical approximation. 

2.8. Some Remarks on Entities 

We intend to discuss briefly in the present section the concept of 
"physical system" because of its central role in CP and in QP; however, 
we do not intend to explore it in detail, since it has no relevance in the sequel. 

Following other authors (e.g., Aerts, 1982; Foulis et al., 1983), we often 
use the word "enti ty" in place of "physical system" here; this avoids in 
particular any confusion with the locution "physical object" that has been 
used throughout our paper with a different meaning. 

Now, let us observe that in common physical language every entity 
can be identified with the set of all properties that characterize it; thus, by 
making use of our intended interpretation (see in particular Section 2.5), 
an entity can be defined by means of a suitable family of exact effects. Yet 
not every family of this kind defines an entity; indeed, some conditions 
must be imposed which derive (via the intended interpretation) from the 
standard physical concept of  entity. 

In order to state these conditions, we need some further definitions. 
Therefore, let ~ be a physical model for the language L= (~,  ~ ) .  Then, 
for every family R =  (Ek)k~_K (K being a set of indices) of symbols of  exact 
effects, and for every laboratory i c [, we call the extension of R in i the set 
pi(R) of physical objects defined as follows: 

pi(R) : f7 pi(Ek) 
k ~ K  

In addition, for every predicate P ~ ~ we say that P belongs to R, and 
write P c R, whenever the following relation holds 

for every i ~ ~ pi(p) c pi(R) 

and denote by JR the set of all symbols of  state that belong to R. 
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Now, we say that the family R = (Ek)ks K defines an entity, which we 
still denote by R, whenever the poset (g(SeR) , <)  is a complete sublattice 
of  ( ~ ,  <) ,  orthocomplemented by the restriction of  • to g(SeR), the maximal 
element ~g of it being such that, for every i ~ I, Pi(~R) = p~(R). 

Let us consider now some consequences of  the above definition. 
First, we note explicitly that at least one entity is defined for every 

physical model 9Y~ if we assume that for every E ~ ~ some S ~ 5 e exists 
such that E = g (S) - -more  precisely, the entity defined by the family R = {9}. 

Second, observe that, for every entity denoted by R and for every 
SC5r we get g ( S ) c R ;  indeed, g(S)'<~R, and hence, for every i~I ,  
p~(g(S))_~ P~(~R)= pi(R) because of the EM condition in Definition 2.4.4. 
This result can be interpreted, via the intended interpretation, as saying 
that every minimal effect which tests a state of some given entity selects 
only samples of this entity. 

Third, for every entity denoted by R, let us consider the maximal effect 
denoted by ~R- Since pi('~R)= p;(R), it follows that samples of this entity 
can be recognized with certainty, because the exact effect denoted by ~n 
selects in every laboratory those, and only those, individual systems which 
are samples of it. 

Fourth, let us assume that the EO, FI, and MS conditions in Definition 
2.6.1 hold, and let us introduce the further assumption that the set Sf can 
be partitioned into subsets of  symbols of states that belong to different 
entities; let us denote by R one of these entities, and let S denote a nonpure 
state and be such that S c R. Then, it is immediate to prove that S can be 
decomposed (in the sense specified by the MS condition) by means of 
symbols or pure states that belong to R. 

3. OPERATIONAL LOGICS 

We introduce in the present section (Sections 3.1-3.3) two new elemen- 
tary formal languages L~ and L s ,  which are constructed for making state- 
ments about a physical object x and about the set of physical objects 
prepared according to the state denoted by S, respectively. We show that 
the sets ~ and ~se of all formulas of L~ and LSe, respectively, can be 
mapped into the set q~ of  wffs of L in such a way that the semantic properties 
induced in both languages by the properties that hold in L coincide with 
those which hold in known two-valued quantum logical structures, while 
the induced interpretations coincide with different admissible interpreta- 
tions in QL (the syntactic differences between L~ and L s being the counter- 
part of  the differences in the interpretations). Thus, we explain the (logical) 
genesis of  quantum logical structures in classical terms. In addition, we 
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show that also "fuzzy logics" can be derived and interpreted by means of  
similar techniques in our classical framework. 

In Section 3.4 we compare CP and QP from our present viewpoint, 
and briefly discuss some epistemologically relevant features of our approach. 

3.1. The Individual Language L~ 

With the following definitions, we introduce, for every x e X, a formal 
language L~,  the statements of which concern a given physical object pT(x) 
whenever an interpretation of the variables o- and a laboratory i are specified. 

Definition 3.1.1. Let ~ be a physical model for the language L = (~/, ~ ) ,  
and let us make reference to the definitions in Sections 1 and 2. 

Let x be interpreted on an individual variable in X. We denote by ~/~ 
the set of  descriptive, logical, and auxiliary signs defined as follows. 

Descriptive signs 
D1. Individual signs: the variable in X denoted by x. 
D2. Predicative signs: all the monadic predicates in ~E- 

Logical signs 
L1. Signs of connectives: • n ,  U. 

Auxiliary signs 
A1. Round parentheses ( . ) .  

Furthermore, we denote by ~ the set of  all well-formed formulas 
constructed by means of  the signs in ~ and of the following rules: 

Wl. For every E e ~e, E (x )e  ~ .  
W2. For every A(x)e  ~ ,  A• e ~ .  
W3. for every A(x), B(x) ~ ~ ,  

A(x) n B ( x ) e ~  and A(x) U B ( x ) e ~  

Finally, we call a formal language L~ the pair L~ = (~/~, ~ )  and 
denote by ~e(x)  the set of all atomic wffs in ~ (which trivially coincides 
with �9 ~ c~ ~) .  

We introduce canonical mappings of  L~ onto ~ and into L and define 
a truth function on ~ by means of the truth function defined on L, as 
follows. 

Definition 3.1.2. Let ~ be a physical model for the language L = (~ ,  ~ ) ,  
and let us make reference to the definitions in Sections 1 and 2 and to 
Definition 3.1.1. 

Bearing in mind Proposition 2.4.1 (iv), we denote (by abuse of language) 
by n and U the join and meet, respectively, in the lattice (ge ,0 ,  <,  • 
Furthermore, for every x e X, we denote by to x the mapping 

oS: A(X) E ~ E A E  ~E 
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recursively defined as follows: 

for every E 6 ~E, 

for every A(x) ~ W~, 

for every A(x), B(x) ~ xF~, 

to~(E(x)) = E 

to~(A• = (EA) l 

~o~(A(x) f-I B(x)) = EA fq En 

ojX(A(x) U B(x)) = EA U Es 

and denote (by abuse of language) by < the quasi-order on ~ defined as 
follows: 

for every A(x), B(x) ~ ~F~, A(x) < B(X) iff EA < EB 

Consequently, we denote (by abuse of language) by ~ and <,  respec- 
tively, the equivalence on ~ and the order on ~ / ~  canonically induced 
by the quasi-order < defined on ~ .  

Furthermore, we call the canonical translation mapping from L~ into L 
the mapping (which is identical on the set of the atomic wffs of  L~) 

~.x: A(x)~q~z-->EA(x)~~ ~E(X)----WE~ C~ 

Finally, for every i~I ,  o-~X, we call the truth function on 'It~ the 
mapping 

f,~: A(x) c qz~--f,-~(EA(x)) ~ (0, 1} 

The following proposition collects some fundamental properties of 
x ~ x the structure ( W z / - ,  < )  and of the truth function fi~ introduced in 

Definition 3.1.2. 

Proposition 3.1.1. Let 93~ be a physical model for the language L =  
(M, W), and let us make reference to the definitions in Sections 1 and 2 and 
to Definitions 3.1.1 and 3.1.2. 

Let x ~ X. Then, the following statements hold. 
(i) Let us introduce the mappings 

~b~: A(x) ~W~ ~ [A(x)]~ c W ~ / ~  

~ :  [ A ( x ) ] ~ c W ~ / ~ E A ( X ) ~  ~E(x) 

stY: E(x) ~ ~ z ( x ) o E ~  ~z 

Then, ~ is well defined, and the diagram 

~I,~/~ , ~ ( x )  =,v~ n,I,  

is commutative. Furthermore, 4~ ~, ~ ,  and to ~ are surjective and preserve 
the quasi-order, while ~ and ~:~ are order isomorphisms; hence, (~E (x), <)  
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x and ( ~ / - ,  < )  are complete lattices, with minimal elements 0(x) and 
[0(x)]=, respectively, orthocomplemented by the well-defined mappings, 
both denoted by • by abuse of  language, 

i .  E(x) e ~z (x) ->E•  ~E(x) 
x ~ . . . >  -L [A (x)]~ '~,~/ • [A(x)]~ e ~I 'E/ -  �9 

(ii) Let A(x), B(x) �9 ~ ; then, 

A(x) < B(x) iff for every i �9 I and o- �9 E, f~ (A(x ) ) -< f~ (B(x ) )  

[hence, A(x)  ~ B(x) iff for every i �9 I and o- �9 E, f;~(A(x)) = f~ (B(x ) ) ] .  

Proof. See Garola (1989). 

3.2. The State Language L s 

With the following definitions we introduce, for every S �9 ~, a formal 
language L s ,  the statements of which regard a set of physical objects p~(S) 
whenever a laboratory i is specified. 

Definition 3.2.1. Let ~ be a physical model for the language L = (~ ,  ~ ) ,  
and let us make reference to the definitions in Sections 1 and 2. 

Let S be interpreted on a state symbol in ~. We denote by ~ s  the set 
of descriptive, specific, logical, and auxiliary signs defined as follows. 

Descriptive signs 
D1. Predicative signs of kind ~, type 1: all the monadic predicates 

in ~E. 
D2. Predicative signs of kind 5 P, type 1: the symbol of state in A ~ 

denoted by S. 

Specific signs 
S1. Diadic predicative constant of type 2: c .  

Logical signs 
L1. Signs of connectives • A, U. 

Auxiliary signs 
A1. Comma ,; round parentheses ( . ) .  

Furthermore, we denote by ~ s  the set of all well-formed formulas 
constructed by means of the signs in ~4 s and of  the following rules. 

Wl. For every E � 9  ~e, c ( S , E ) e ~  s .  
W2. For every A(S) �9 ~se, A~(S) e ~ s .  
W3. For every A(S), B ( S ) � 9  s ,  

A(S) N B ( S ) � 9  and A(S) U B ( S ) � 9  

Finally, we call the formal language LSe the pair L s = (Me,~E).s  s 

We introduce canonical mappings of L s onto ~E and into L and define 
a truth function and a fuzzy-truth function on �9 s by means of the two-valued 
truth function defined on L, as follows. 
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Definition 3.2.2. Let 93~ be a physical model for the language L = (M, W), 
and let us make reference to the definitions in Sections 1 and 2 and to 
Definition 3.2.1. 

Let S ~ 5r we denote by to s the mapping 

s A(S) E ~S--> EA E ~E 

recursively defined as follows: 

for every E ~ ~z, 

for every A(S) z ~ s ,  

for every A(S), B(S) z ~ s ,  

tos(,'- (S, E)) = E 

(oS(A• = (EA) • 

toS(A(S) fq B(S)) = E A N E B 

toS(A(S) U B(S)) = E A U E B 

and denote (by abuse of  language) by < the quasi-order on ~ S  defined as 
follows: 

for e v e r y A ( S ) , B ( S ) ~ q  zs ,  A(S )<B(S )  iff E A < E  B 

Consequently, we denote (by abuse of  language) by ~ and <,  respec- 
tively, the equivalence on �9 ~ and the order on �9 s / =  canonically induced 
by the quasi-order < defined on ~ S .  

We call the canonical translation mapping from LS into L the mapping 

rs:  A(S) ~ 'vS ~ (Vx)(S(x) -> E A ( x ) )  E ~.r 

with x any variable in X. 
Bearing in mind Proposition 1.6.2(v), for every i ~ ! we call the truth 

function on q~s the mapping 

f s :  A(S) ~ q t s  +f~( (Vx)(S(x)  ~ E A ( x ) ) )  C {0, 1} 

with o" any interpretation of the variables in Y. 
We call the family of  fuzzy translation mappings from L s into L the 

family (OrS) r~[O, ll, where 

Of:  A(S) E airS "-> (~'i'rX)EA(x)/S(x) E + 

with x any variable in X. 
Bearing in mind Proposition 1.6.2(i), for every i ~ I we call the fuzzy- 

truth function on w s  the mapping 

s :  A(S) ~ q ~ s ~  r, ~ [0, 1] 

where ~S(A(S)) = ri is the unique real number in [0, 1] such that, for any 
cr E Y, f,~( ( Trrx)Ea(x)/S(x) ) = 1. 
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The following proposition collects some fundamental properties of the 
structure ( U S / ~ ,  <),  of the truth function f s ,  and of the fuzzy-truth 
function s introduced in Definition 3.2.2. 

Proposit ion 3.2.1. Let 2~ be a physical model for the language L =  

(•, U), and let us make reference to the definitions in Sections 1 and 2 and 
to Definitions 3.2.1 and 3.2.2. 

Let S ~ 5~ Then, the following statements hold. 
(i) Let us introduce the mappings 

t#s: A(S) c U  s-> [A(S ) ]=cuse / ~  

xS:  [ A ( S ) ] ~ u s / ~ - ~ E A ~  RE 

r (Vx)(S(x)-~ E(x)) ~ ~s(u~)-~ E c RE 

Then X s is well defined and the diagram 
O) S 

t r s 
is commutative. Furthermore, w s and ~b s are surjective and preserve the 
quasi-order, while X s is an order isomorphism; hence, the partially ordered 
set ( u S / ~ ,  <)  is a complete lattice, with minimal element [=(S,O)]=,  
orthocomplemented by the well-defined mapping, still denoted by ", by 
abuse of language, 

• [A(S)]= c u S / ~ _ >  [A• c u S / ~  

(ii) Let A(S), B(S) ~ use ; then, 

A(S)<B(S)  iff 

for every i e I and S* 6 5f, fS*(A(S))-<ff*(B(S*)) iff 

for every i e [ and S* ~ Y, ~oS*(A(S*)) <- ~S*(B(S*)) 

[Hence, 

A(S)  --~ B(S)  iff 

for every i c I and S* c 5 v, 

for every i c I and S* c if, 

fS*(A(S*)) = fS*(B(S*)) itt 

~pS*(A(S*)) = q~S*(B(S*))] 
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(iii) Whenever ~ satisfies the FI condition, the mappings f s  and ~0 s 
are independent of i. 

Proof See Garola (1989). 

3.3. The Derived Intended Interpretation of L~ and LSe 

We comment in the present section on the languages L~ and L s in the 
framework of  the intended physical interpretation introduced in Sections 
1.3, 1.5, and 2.5. 

Let us begin with the interpretation of L~. Let A(x)6 ~ .  Then, the 
mapping w x in Definition 3.2.1 associates with A(x) a symbol of  exact effect 
EA C C~E, and the canonical translation mapping T x maps A(x) on the atomic 
wff EA(X); the latter belongs to ~ ,  so that it can be interpreted, 
according to the rules in Section 1.5, enriched with the interpretation of ~e 
discussed in Section 2.5, as follows: 

"The physical object denoted by x has the physical property denoted 
by E A ." 

This interpretation will be adopted even for the wff A(x) ~ ~ .  
Let us come now to the quasi-order structure ( ~ ,  <) .  As observed 

at the end of  Section 2.5, the formal language L~, with the induced relation 
< [hence, more specifically, ( ~ ,  <)] ,  provides an instance of a general 
procedure which can be used in order to construct "empirical logics;" 
indeed, it is obtained by selecting the subset ~z (x) of epistemically access- 
ible formulas of L and by introducing new symbols of operation in this set 
whose semantic properties follow from semantic relations between wffs in 
~E(x). Thus, ( ~ ,  <)  can be considered from two different viewpoints, the 
first one arising from the definition of < and from statement (i) in Proposi- 
tion 3.1.1, and the second one arising from statement (ii) in Proposition 
3.1.1. According to the former, the lattice structure of ( ~ / ~ ,  <),  which 
is order-isomorphic to (~z,  <),  turns out to be a consequence of formal 
conditions on the model sy~ which express semantic relations between 
primitive predicates and have the truth mode of physical laws, so that it 
simply reflects the empirical structure of the set of physical properties. 
According to the latter, the quasi-order relation < on ~ can be identified 
with the quasi-order induced on ~ by the family of truth functions 

.~r . x {fi,,}i~ ~.,~,  in this sense, ( ~  e,  <)  can be considered a "logical" structure, 
and ( ~ / ~ ,  <)  its algebra of propositions [since every fi~ is completely 
determined by the restriction of f~  to the subset ~E(x) of atomic wffs of 
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L, or cont ingent  part o f f~ ,  which is not concerned with the logical apparatus 
of L, ( ~ ,  <)  maintains an empirical character even if this perspective is 
adopted]. We refer the reader to Section 2.5 for further comments on this 
metatheoretical attitude. 

No matter what viewpoint is embraced, the structure ( ~ / 2 ,  <) ,  which 
occurs both in CP and in QP, exhibits the basic semantic properties usually 
assumed when an algebraic semantics for QL is assigned (it is a complete 
orthocomplemented, possibly atomic, lattice); because of the aforesaid 
isomorphism with ( ~ ,  <),  this structure can be endowed with further 
mathematical properties by means of further physical assumptions on 
(~E, < )  (in particular, it is distributive in CP, and weakly modular and 
satisfying the covering law in QP). In addition, the above interpretation of 
�9 ~ is a possible interpretation in QL. Thus, we can affirm that we have 
derived a quantum logical structure in our extended classical framework 
on the basis of extralogical (more precisely, physical) assumptions; of 
course, such a derivation suggests that considering ( ~ ,  <)  as a "logic" in 
the full sense is philosophically questionable. 

In any case, it is important to note that the connectives ~, N, and U 
in the alphabet of L~ cannot be a priori identified with the connectives 7 ,  
A, and v, respectively, in the alphabet of L (though the identification can 
be made in CP). Rather, their interpretation must be deduced from the 
above interpretation of  the wffs in ~ [for instance, for every El,  E2 e ~e, 
E~(X) U E2(x) states that the physical object denoted by x has the property 
denoted by E~ U E2]. As a matter of fact, the identification between ~ and 

turns out to be physically possible in this case (Garola, 1989). 
Finally, we stress that any truth function f~'~ is two-valued, as we expect 

if it is interpreted as attributing a truth value to statements about physical 
objects. 

Let us discuss now the interpretations of LSe. We have a unique mapping 
to s in Definition 3.2.2 that associates with every A(S)e~se  a symbol of 
exact effect E A E ~E ; yet, we define two different kinds of translations of 
LSe into L, since the canonical translation mapping ~.s and the family of 

0 s fuzzy translation mappings ( r)r~[0,1l are introduced. Therefore, different 
interpretations of L s can be obtained in the two cases, and we deal with 
them separately. 

We begin with the canonical translation mapping. According to ~s, 
any wff A(S) that belongs to ~ s  is mapped on the wff (Vx)(S(x)~ EA(x))  

that belongs to �9 and can be interpreted, according to the rules in Sections 
1.5 and 2.5, as follows: 

"All physical objects prepared according to the state denoted by S 
have the physical property denoted by EA. ' '  

This interpretation will be adopted even for the wff A(S)e  V s .  
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Let us consider now the quasi-order structure (U s ,  <).  Like L~, also 
L s with the induced relation < [hence, more specifically, (U s , <)]  can be 
considered an empirical logic constructed by applying the general pro- 
cedures described in Section 2.5. Indeed, it can be obtained by selecting a 
subset of  epistemically accessible wffs in L that can be obtained from the 
(metalinguistic) scheme (Vx)(S(x)~ E(x)), by designating these wffs with 
new symbols, taking them as atomic wffs of  L s ,  and by introducing new 
symbols of operation on this subset whose semantic properties follow from 
semantic relations between formulas in the subset. Thus, (U s ,  <) ,  like 
( ~ ,  <),  can be treated from two different viewpoints, the first one arising 
from the definition of < and from statement (i) in Proposition 3.2.1, the 
second one arising from statement (ii) in Proposition 3.2.1. According to 
the former, the lattice structure of ( ~ s / = ,  <)  is isomorphic to the lattice 
structure of (~E, <)  and induced by it, so that it simply reflects, via our 
intended physical interpretation, the empirical structure of the set of physical 
properties. According to the latter, the quasi-order relation < on U s 
coincides with the quasi-order induced on U s by the family of truth 
functions {fT}i~1.s~s~ (where f.s,  which does not depend on i if the FI 
condition holds, is completely determined by the restriction o f f ~ ,  with any 
cr ~ ~, to the atomic wits of L, hence by the contingent o f f~ ) ;  in this sense, 
(U s ,  <)  can be considered a logical structure and (~se /= ,  <)  its algebra 
of propositions [of course, (~se, <)  maintains an empirical character even 
if this perspective is embraced]. 

Whenever the second viewpoint is adopted, we have again a structure 
[to be precise, ( ~ s / ~ ,  < )] that occurs both in CP and in QP and exhibits 
the main basic mathematical features usually assumed when an algebraic 
semantics for QL is assigned, the properties lacking being recovered through 
(~E, <)  whenever CP or QP are considered; moreover, the interpretation 
of  U s coincides with a possible interpretation in QL [see in particular 
Beltrametti and Cassinelli (1976, 1981)]. Thus, we can claim that we have 
derived another quantum logical structure in our extended classical 
framework, on the basis of  physical assumptions [the syntactic differences 
between ( ~ ,  <)  and (U s ,  <)  being the counterpart of the differences in 
the interpretations]. Again, this derivation makes classifying (U s ,  <)  as a 
new logic philosophically questionable. 

As in the case of L~, it is important to notice that the connectives ~- 
N, and U in the alphabet of L s cannot be a priori identified with the 
connectives --1, ^, and v, respectively, in the alphabet of L; indeed, their 
interpretation must be deduced from the above interpretation of the wffs 
in U s [for instance, for every E~, E2c ~E, c (S, E~)U = (S, E2) states that 
all physical objects prepared according to the state denoted by S have the 
physical property denoted by E1 U E2]. The identification of -7 and z is not 
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possible here; indeed, they could be seen as examples of van Fraassen's 
(1974) exclusion and choice negations, respectively. We also stress that any 
truth function f s is two-valued, as we expect if it is interpreted as attributing 
a truth value to the statements of ~se. 

Let us consider now the family of fuzzy translation mappings. Here, 
the mapping O s from s (l~r)r~[0,1] maps any A(S) that belongs to ~ s  on the 
wff (~-rx)EA(x)/S(x); the latter belongs to �9 and can be interpreted, accord- 
ing to the rules in Section 1.5, as follows: 

"The physical objects prepared according to the state denoted by S 
have the physical property denoted by E A with frequency r." 

This suggests that the following new interpretation of A(S) can be 
introduced: 

"A physical object prepared according to the state denoted by S has 
the physical property denoted by EA. '' 

Whenever this interpretation is adopted the number r i--~S(A(S)) 
(which does not depend on i if the FI condition holds) can be interpreted 
as the "degree of truth" of A(S). 

In order to understand the genesis of  this "fuzzy logical" viewpoint 
(which underlay our choice of  the name "fuzzy-truth function" for ~ps), let 
us observe that Definition 3.2.2, Proposition 1.6.2(i), and Definition 1.4.1 (v), 
imply, whenever the measure function ui reduces to the number of elements 
of  its argument, that CS(A(S)) is the percentage of elements in p~(S) that 
belong to pi(EA); hence, it can directly be interpreted as a physical frequency, 
consistent with our arguments in Section 1.5. Alternatively, it can be inter- 
preted as the "degree of truth (in the laboratory i) of the property denoted 
by E A for a physical object prepared according to the state denoted by S," 
consistent with the standard interpretation of many-valued truth functions 
in fuzzy logics (however, we think that this interpretation is problematic, 
since it implies the adoption o fa  non-Tarskian theory of  truth, and introduce 
it here only because of its occurrence in the literature). 

Let us come now to the quasi-order structure (~se, <).  Here, again, 
( ~  s ,  < )  can be treated from two different viewpoints because of statements 
(i) and (ii) in Proposition 3.2.1; it is apparent that all our arguments above 
regarding our first interpretation of L s can be repeated with the substitution 
of  the family s {r }i~1,s~:p to {fs}i~t.s~.~. Therefore, we conclude that we 
have a structure which occurs both in CP and QP and exhibits the basic 
mathematical features usually assumed when an algebraic semantics for QL 
is assigned [again, the properties lacking can be recovered through (Re, <)  
whenever CP or QP are considered]; moreover, ~ s  has an interpretation 
which is a possible interpretation in many-valued QL [see, in particular, 
Watanabe (1969)]. Thus, we can say that we have derived an infinite-valued 
quantum logical structure in our extended classical framework, on the basis 
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of physical assumptions, again noticing that considering these structures as 
true "logics" is philosophically problematic (it should be noted that our 
procedures exemplify a general method for deriving and interpreting multi- 
valued logical structures in a classical framework; in particular, they could 
be applied in order to obtain three-valued quantum logics]. 

Even in this case, we remark that the connectives _L, f-I, and U in L s 
cannot be identified a priori with the connectives ~,  ^, and v in L; indeed, 
their interpretation must be deduced from the above interpretation of 
U s [for instance, for every El,  E2E ~E, ~ (S, E~) U c (S, E2) states that a 
physical object prepared according to the state denoted by S has the 
physical property denoted by E~ U E2]. 

Finally, let us briefly explore the links between L~ and L s . We have 
already seen that the quotient structures ( U ~ / = ,  <)  and (Use/~,  <)  are 
both isomorphic to (~e,  <).  In addition, let us observe that the mapping 
T .... recursively defined by 

for every E E ~E, 

for every A(x) c U~ ,  

for every A(x), B(x) c U~ 

~'x~(E(x)) = c (S,  E) 

,rxs(A~(x)) = (r~s(A(x)))  j- 

�9 ~s(A(x) N a ( x ) )  = ~'xAA(x)) N ~x~(a(x)) 

z~s(A(x) U B(x) )  = T~,(A(x)) U z ~ ( B ( x ) )  
is a quasi-order isomorphism of (U~,  <)  onto (U s ,  <),  which makes the 
diagram 

commutative. This clarifies the deep reasons for the structural analogies 
between U~ and U s .  

Looking at the above diagram, one can suspect that the isomorphism 
between U}  and U s can be extended to the semantic level (in the sense 
that corresponding formulas have the same truth values). Now, let i ~ I and 
let the interpretation of  the variables or~E be such that the condition 
pT(x) e pT(S)[equivalently, f/~(S(x)) = 1] holds. 

Then, by making use of the equivalence 

fS(A(S))  = 1 iff f/~((Vx)(S(x)-~ EA(x)))---- 1 

which follows from Definition 3.2.2, we get 

fS(A(S))  = 1 implies ~ ( E A ( x ) )  = 1 

Since 

f~(z~l (A(S)) )  = fi~(~o ~ ( z ~  (A(S))) (x)) 
= f~o-(EA(x)) 



Classical Foundations of Quantum Logic 47 

we obtain 

fS(A(S)) - -  1 implies fr~(zx)(A(S)))--  1 

It is easy to see that the above implication cannot be reversed unless 

f~(S(x)  ~ EA(x))---- 1 implies f~((Vx)(S(x)  ~ EA(x))) ---- 1 

This implication holds in CP whenever S denotes a pure state (see 
below, Section 3.4), but does not generally hold in QP. Thus, while the 
truth of a wff A(S) e L s implies (under suitable conditions) the truth of the 
wff A(x) c L~ such that zxs(A(x)) = A(S), the converse statement is generally 
false, and it may be erroneous to transfer truth values from wffs in ~ to 
the corresponding (via zxs) wffs in V s .  In my opinion, such an abusive 
transfer plays an important role in some classical "paradoxes"  in QP. 

Bearing in mind the above interpretations of L~ and L s , and restricting 
consideration, for the sake of simplicity, to two-valued semantics, one 
can point out another epistemologically relevant difference between these 
languages which obtains whenever the FI condition holds. More precisely, 
recall that we have repeatedly affirmed that L~ and L s are obtained by 
picking out suitable subsets of epistemically accessible wffs in L (see Section 
2.5 and the first part of the present subsection). Now, we observe that testing 
the truth value of a wff A(x) e ~ in a laboratory i e I under the inter- 
pretation o-e E implies: (i) considering the physical object p~(x), which 
necessarily belongs to a set pi(5), with S a symbol of state; (ii) performing 
a measurement on p~(x) by means of an apparatus which actualizes in i 
the exact effect denoted by EA. After the measurement, which is equivalent 
to applying a new preparation procedure in the laboratory, the physical 
object loses its previous identity and transforms into a new physical object 
which does not necessarily belong to pi(S) (a similar transformation occurs 
whenever dynamical evolution is considered; yet we know the state of the 
physical object at any time in this case). 

Thus, the physical object could not be disposable for further measure- 
ments: each formula in L~ is epistemical!y accessible, but different formulas 
could be not simultaneously accessible. 

Let us come to L s .  Testing the truth value of a wff A ( S ) e ~ s  is 
equivalent to testing the truth value of the wff (Vx) (S(x) -~EA(x) )e~ .  
Hence, it implies: (i) considering all the physical objects that belong to 
pi(S); (ii) performing a measurement on each of these objects by means of 
an apparatus which actualizes in i the exact effect denoted by E A. Again, 
after the measurements, the physical objects that were in pi(S) could be no 
longer disposable for further measurements. Yet, the truth value of  another 
formula in ~ s  can be tested in a different laboratory j, with the same 
methods described above; whenever the FI condition holds, statement (iii) 
in Proposition 3.2.1 guarantees that this test gives the same result as a test 
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performed in i. Thus, the formulas of LSe, which are epistemically accessible, 
are also simultaneously accessible. This result is epistemologically important 
and throws further light on the different roles that can be attributed to L~ 
and L s in physics. 

3.4. Classical versus Quantum Physics 

We have seen in Section 2 that the preclusivity relation # on the set 
of states plays a fundamental role in our approach; in particular, the lattice 
structure of 5r and the definitions of fuzzy and exact effects rest on the 
definition of  # .  Thus, it is important that the difference between a classical 
and a quantum semantic model can be established as a difference between 
preclusivity relations. 

Let us consider CP. By using common physical language, we can say 
that the following assumption is fundamental (though usually implicit) in 
classical theories: the minimal effect associated with a state gives the no 
answer whenever applied to any physical object in another state if the latter 
state is decomposable (in the sense established by classical statistical 
mechanics) by means of pure states which do not appear in the decomposi- 
tion of the former (hence, for every state the decomposition by means of 
pure states is unique; furthermore, the minimal effect associated with a pure 
state gives the no answer if it is applied to any physical object in another 
pure state). By translating this statement, via our intended interpretation, 
into our present framework, we say that a physical model ~)~ is a classical 
physical model whenever it satisfies the EO, FI, and MS conditions (see 
Definition 2.6.1) and, in addition, the following classical physics condition 
(briefly, CP condition) holds. 

CP. Let S~, $2 ~ 5 r and let (S~k)k~ K and (S2j)j~ K be families of  mutually 
preclusive symbols of pure states associated to S~ and $2, respectively, 
which satisfy statement (i) in the MS condition. 

Then, $1 # $2 iff for every k, j e K, Slk r $2~. 

Whenever ~ is a classical physical model, the following statements 
hold (Garola, 1989). 

(i) Let S~, $2~ ~ e ;  then, S~ # $2 iff S~r  
(ii) For every S c  O ~ a unique family (Sk)k~K exists which satisfies 

statement (i) in the MS condition. 
(iii) The weak orthocomplementation • on ~(5r reduces to the set- 

theoretic complementation c, that is, for every H ~ ( S e e ) ,  H • H c =  
b~ [hence, the set ~ =  {H ~ ~(Sep)[ H = H • coincides with ~(5r 

(iv) The set ~o coincides with the set ~. 
(v) The restriction SrE of ST to ~e is an order isomorphism 

of  the complete orthocomplemented lattice ( ~ e , 0 , < ,  • [equivalently, 
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(~'E,0, <,  ')] onto (~(b~e), ~ ,  _ ,  c),  which preserves the orthocomple- 
mentation [hence, (~E, 0, <,  • is distributive, and for every E ~ ~E the 
certainly false domain SF(E) coincides with b~p\ST(E)]. 

(vi) For every E ~ ~e and i c 

pi(E)  = U pi(g(S)) 
SEST(E) 

(vii) For every El, E2 c ~ and i c I, 

pi(E1 fq E2) = p,(E,) c~ pi(E2) 

pi(E 1U E2) = v,(E,) u pi(E2) 

[in addition, for every E ~ ~qz, p~(E') = DAp~(E), which holds independently 
of the CP condition]. 

(viii) For every i c  L t r eE ,  x c X ,  and A(x), B ( x ) z q ~ ,  

fi~(A(x) f'l B(x)) =f/~(~'X(A(x)) ^ r 

f~(A(x)  U B(x)) =f/~(~-X(A(x)) v ~'X(B(x))) 

[in addition, for every A(x) z ~ ,  f~ (Al (x) )  =f~(-TrX(A(x))), which holds 
independently of the CP condition]. 

(ix) Let i z ~ S c 5%. Then, for every A(S) z "It sE, ~S(A(S)) =f~S(A(S)) 
[hence, ~S(A(S)) ~ {0, 1}]. Furthermore, let o-z2,  let xz  X be such that 
pT(x) c p~ (S), and let rxs be the mapping defined at the end of Section 3.3. 
Then, for every A(x)z ~ ,  f i~ (A(x) )=fs (%(A(x) ) ) .  

Let us come now to QP. Here, the CP conditions is untenable; indeed, 
pairs of different pure states exist in QP such that the minimal effect 
associated with one of them may give the yes answer if applied to a physical 
object prepared according to the other (see, in particular, Section 2.2). By 
formalizing this result in our present framework, we obtain that, for every 
S~, $2~ 5Pe, S~ #$2 does not imply S~ # $2, which contradicts our above 
statement (i). 

In place of the CP principle, some physical assumptions are made in 
QP which make ( ~z, 0, <,  ') a weakly modular lattice satisfying the covering 
law; more directly, one could simply assume these properties in the complete 
orthocomplemented (atomic) lattice (~z,0,  < , ' ) ,  resting on well-known 
treatments of the foundations of QP for a physical justification of these 
assumptions [see, in particular, Piron (1976)]. 

In any case, one may wonder whether one or more of statements (i)-(ix) 
still hold in QP. Now it can be proved that, whenever our interpretation is 
maintained, all these statements have counterexamples in QP [with the 
possible exception of statement (iv)]. 

In particular, the lattice (~z,0,  < , ' )  is not distributive [at least for 
irreducible, or not completely reducible, quantum systems (e.g., Jauch, 1968; 
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Piron, 1976)] and for every E ~ ~ there are some pure states which neither 
belongs to S t ( E )  nor to S~-(E); these statements obviously contrast with 
statement (v). Furthermore, the fuzzy-truth function s on use is not 
two-valued, not even when S e b~ contrary to statement (ix). More impor- 
tant, the connectives (q and U in ~/)  cannot be identified with the logical 
connectives ^ and v in ~ [contrary to statement (viii)] and the language 
L )  is not identifiable with L s [contrary to statement (ix)] even if it can be 
formally translated onto L s by means of the bijective mapping zx~ introduced 
in Section 3.3; indeed, the truth functions f;~ and f s  defined on L )  and 
L s do not necessarily take the same values on corresponding formulas, so 
that these languages are not semantically isomorphic (in particular, the 
truth or falsity of some statements on a physical object prepared according 
to a given state does not authorize one to infer the truth or falsity of the 
corresponding statements about all the objects prepared according to that 
state). 

We note that statements (i)-(ix), when interpreted according to our 
intended interpretation, formally express some deeply impressed and intui- 
tive beliefs which have been sometimes assumed (often implicitly, especially 
by those physicists who share a "realistic" attitude) as epistemological 
requirements for every physical theory. Thus, their failure in QP has been 
considered paradoxical by some authors. Partly, this attitude depends on 
the (erroneous) conviction that the necessity of abandoning some epistemo- 
logical assumptions implies the need to adopt a new kind of logic. 

In my opinion, it is an advantage of the present approach that the 
aforesaid requirements appear as a consequence of an explicit "a  priori" 
condition, the CP condition, that has no "logical" necessity (as a matter of 
fact, it turns out to be false in microphysics), while the quantum physical 
features discussed above lose their paradoxical aspects in our perspective 
and appear as a consequence of the rejection of the same condition. Of 
course, the epistemological aspects of this abdication may cause trouble 
and be the origin of debate (in particular, the breakdown of strict determin- 
ism; see Section 2.2; more specifically, the assumption, which is anomalous 
from a classical viewpoint, that a physical object prepared according to 
some pure state may be registered by a device testing whether the object is 
prepared according to another state). 

In any case, our approach shows that no nonclassical logical system 
is strictly needed when founding QP. Thus, in conclusion, QP does not 
require an alternative logic (though it can suggest new logical structures, 
as we have seen above), but, rather, a nonclassical epistemological attitude. 

I close with two general remarks. First, observe that our neat distinction 
between different quantum logical languages, founded on a unique extended 
classical language, besides being useful in the analysis of some "paradoxes"  
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in QP, also allows for a reformulation of some classical problems, such as 
the problem of completeness of  quantum laws (Garola  1989), which is 
strictly connected with the endless debate about the interpretation of quan- 
tum mechanics (e.g., Blokhintsev, 1968). 

Second, note that, when adopting known procedures in QL [e.g., 
Putnam (1969) and Finkelstein (1969, 1972); according to Holdsworth and 
Hooker  (1983), these procedures "read off" the logic from the lattice of  
subspaces] to our framework,  the Hilbert space model for QP can be adopted 
in order to introduce a semantic model ~ s  for the language LSe, with a 
two-valued truth function f s ;  this can be done by means of  standard 
correspondences,  and it can be easily proved that f s  coincides with the 
truth function f s  in this case. Thus, the language LSe with truth function 
f s  can be obtained by substitution of Hilbert spaces to set theory in the 
semantic model,  without any reference to L. However,  it must be clearly 
understood that this procedure implies the adoption of a non-Tarskian truth 
theory, which is a higher price to pay in my opinion. 

It is also interesting to remark that no similar procedure exists for the 
individual language L~,  because of the absence of any element in the 
Hilbert space model which is associated with individual physical systems. 
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